通过学习,已经提出了神经网络进行医学图像注册,并具有大量的培训数据,以及图像对之间的最佳转换。这些训练有素的网络可以进一步优化一对测试图像 - 称为测试时间优化。这项工作将图像注册作为一种元学习算法。可以通过对齐训练图像对,同时提高测试时间优化功效来对此网络进行训练;以前被视为两个独立培训和优化过程的任务。假设所提出的元注册以最大化测试时间优化在网络的“外部”元优化中的效率和有效性。对于通常是时间关键但训练数据中限制的图像引导应用程序,将潜在的速度和准确性与经典注册算法,无元学习的注册网络以及没有测试时间优化数据的单对优化进行了比较。本文使用来自108名前列腺癌患者的临床超声超声图像数据进行了实验。这些实验证明了元注册方案的有效性,该方案相对于现有基于学习的方法而产生的性能显着提高。此外,由于其快速的测试时间优化过程,元注册在一小部分时间内与经典迭代方法相当。
translated by 谷歌翻译
在这项工作中,我们考虑了成对的跨模式图像注册的任务,这可能会受益于仅利用培训时间可用的其他图像,而这些图像从与注册的图像不同。例如,我们专注于对准主体内的多参数磁共振(MPMR)图像,在T2加权(T2W)扫描和具有高B值(DWI $ _ {high-b} $)的T2加权(T2W)扫描和扩散加权扫描之间。为了在MPMR图像中应用局部性肿瘤,由于相应的功能的可用性,因此认为具有零B值(DWI $ _ {B = 0} $)的扩散扫描被认为更易于注册到T2W。我们使用仅训练成像模态DWI $ _ {b = 0} $从特权模式算法中提出了学习,以支持具有挑战性的多模式注册问题。我们根据356名前列腺癌患者的369组3D多参数MRI图像提出了实验结果图像对,与注册前7.96毫米相比。结果还表明,与经典的迭代算法和其他具有/没有其他方式的经典基于测试的基于学习的方法相比,提出的基于学习的注册网络具有可比或更高准确性的有效注册。这些比较的算法也未能在此具有挑战性的应用中产生DWI $ _ {High-B} $和T2W之间的任何明显改进的对齐。
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
图像注册广泛用于医学图像分析中,以提供两个图像之间的空间对应关系。最近提出了利用卷积神经网络(CNN)的基于学习的方法来解决图像注册问题。基于学习的方法往往比基于传统优化的方法快得多,但是从复杂的CNN方法中获得的准确性提高是适度的。在这里,我们介绍了一个新的基于深神经的图像注册框架,名为\ textbf {mirnf},该框架代表通过通过神经字段实现的连续函数的对应映射。 MIRNF输出的变形矢量或速度向量给定3D坐标为输入。为了确保映射是差异的,使用神经ODE求解器集成了MiRNF的速度矢量输出,以得出两个图像之间的对应关系。此外,我们提出了一个混合坐标采样器以及级联的体系结构,以实现高相似性映射性能和低距离变形场。我们对两个3D MR脑扫描数据集进行了实验,这表明我们提出的框架提供了最新的注册性能,同时保持了可比的优化时间。
translated by 谷歌翻译
Deformable image registration, i.e., the task of aligning multiple images into one coordinate system by non-linear transformation, serves as an essential preprocessing step for neuroimaging data. Recent research on deformable image registration is mainly focused on improving the registration accuracy using multi-stage alignment methods, where the source image is repeatedly deformed in stages by a same neural network until it is well-aligned with the target image. Conventional methods for multi-stage registration can often blur the source image as the pixel/voxel values are repeatedly interpolated from the image generated by the previous stage. However, maintaining image quality such as sharpness during image registration is crucial to medical data analysis. In this paper, we study the problem of anti-blur deformable image registration and propose a novel solution, called Anti-Blur Network (ABN), for multi-stage image registration. Specifically, we use a pair of short-term registration and long-term memory networks to learn the nonlinear deformations at each stage, where the short-term registration network learns how to improve the registration accuracy incrementally and the long-term memory network combines all the previous deformations to allow an interpolation to perform on the raw image directly and preserve image sharpness. Extensive experiments on both natural and medical image datasets demonstrated that ABN can accurately register images while preserving their sharpness. Our code and data can be found at https://github.com/anonymous3214/ABN
translated by 谷歌翻译
我们介绍了一种基于梯度下降的图像登记网络(Gradirn),用于通过在深度学习框架中嵌入基于梯度的迭代能量最小化来学习可变形的图像配准。传统的图像登记算法通常使用迭代能量 - 最小化优化来查找一对图像之间的最佳变换,这在需要许多迭代时是耗时的。相比之下,基于学习的方法通过训练深神经网络来迁移这一昂贵的迭代优化,以便通过快速网络向前通过训练后可以实现一对图像的登记。通过图像重建技术的成功激励,与迭代变分能优化的数学结构相结合的深度学习,我们基于多分辨率梯度下降能量最小化制定新颖的登记网络。网络的前进通过通过卷积神经网络(CNN)参数化的显式图像相容梯度步骤和用于固定数量的迭代的卷积神经网络(CNN)。我们使用自我差异化来导出显式图像异化梯度W.r.t.的前向计算图。变换,因此可以在没有复杂和易于出错的梯度衍生的情况下使用任意图像相似度量和转换模型。我们证明,这种方法通过使用2D心动MR图像和3D脑MR图像使用更少的学习参数,在使用更少的学习参数时实现最先进的登记性能。
translated by 谷歌翻译
自由点变压器(FPT)已被提出为使用深神经网络的数据驱动的,非刚性点设置的注册方法。由于fpt不基于点附近或对应关系假设约束,因此可以通过根据倒角距离最大程度地减少无监督的损失来简单训练它。这使得fpt可以适应现实世界中的医学成像应用,在这些应用程序中可能无法获得地面变形,或者在仅在要对齐的点集中只有不同程度的完整性的情况下。为了测试FPT及其对培训数据集的依赖性的对应关系的限制,这项工作探讨了FPT从良好策划的非医学数据集到医学成像数据集的普遍性。首先,我们在ModelNet40数据集上训练FPT,以证明其有效性和FPT的出色注册性能,而不是基于迭代和学习的点设置注册方法。其次,我们证明了缺少数据的刚性和非刚性注册和鲁棒性的卓越性能。最后,我们通过在没有额外的训练的情况下注册了重建的脊柱和通用脊柱模型的徒手超声扫描,强调了模型网训练的FPT的有趣概括性,从而在13位患者的情况下,对地面真相曲率的平均差异为1.3度。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
纵向形象注册是具有挑战性的,并且由于深学习,尚未受益于主要的性能改善。通过深映像的启发,本文介绍了不同利用的深层架构作为常规,以解决图像登记问题。我们提出了一种称为MIRRBA的特定主题可变形的登记方法,依赖于深的金字塔架构是限制变形场的现有参数模型。 MIRRBA不需要学习数据库,而是仅登记的图像,以便注册一对图像以优化网络参数并提供变形字段并提供变形字段。我们展示了深度架构的正规化力量,并呈现了新的元素,以了解架构在注册的深度学习方法中的作用。因此,要研究网络参数的影响,我们在110个转移乳腺癌全身宠物图像的私有数据集中运行了不同的架构配置,具有大脑,膀胱和转移性病变的手动分割。我们将其与传统的迭代登记方法进行比较和监督基于深度学习的模型。使用检测率和骰子分数评估全局和局部注册准确性,而使用雅加诺的决定因素评估登记现实。此外,我们计算了不同方法以消失的速率缩小消失的病变的能力。 MIRRBA显着改善了监督模型的器官和病变骰子分数。关于消失率,MIRRBA多倍于最佳性能的传统方法SYNCC得分。因此,我们的工作提出了一种替代方法来弥合常规和深度学习的方法之间的性能差距,并展示了深度架构的规律力量。
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
基于深神经网络(DNN)的不确定性(基于DNN)的图像登记算法在部署图像注册算法中起着至关重要的作用在面向研究的处理管道中。目前可用的基于DNN的图像登记算法的不确定性估计方法可能导致临床决策,这是由于对注册的不确定性的潜在不准确估计源是对注册潜在空间的假定参数分布的源。我们引入了NPBDREG,这是一种完全非参数贝叶斯框架,通过将ADAM优化器与随机梯度Langevin Dynamics(SGLD)相结合,以通过后验通过后抽样将基于DNN的可变形图像注册中的不确定性估计。因此,它具有提供与出现未分布数据的存在高度相关的不确定性估计值。我们使用四个公开可用数据库中的$ 390 $图像对(MGH10,CMUC12,ISBR18和LPBA40)在Brain MRI图像配准上证明了NPBDREG的附加价值,与基线概率VoxelMorph模型(PRVXM)相比。 NPBDREG显示了预测不确定性与分布数据($ r> 0.95 $ vs. $ r <0.5 $)的更好相关性,并且注册准确性提高了7.3%(骰子得分,$ 0.74 $ vs。 $ 0.69 $,$ p \ ll 0.01 $),注册平滑度提高了18%(变形字段中的折叠百分比为0.014 vs. 0.017,$ p \ ll 0.01 $)。最后,与基线PRVXM方法相比,NPBDREG证明了由混合结构噪声损坏的数据(骰子得分为$ 0.73 $,$ 0.69 $,$ p \ ll 0.01 $)的概括能力更好。
translated by 谷歌翻译
在医学中,图像注册对于图像引导的干预措施和其他临床应用至关重要。但是,很难解决,通过机器学习的出现,最近在该领域的医疗图像注册方面已经取得了很大的进步。深度神经网络的实施为某些医学应用提供了机会,例如在更少的时间内进行图像注册,以高精度,在操作过程中对抗肿瘤中发挥关键作用。当前的研究对基于无监督的深神经网络的医学图像注册研究的最新文献进行了全面的范围审查,其中包括到本领域在此日期中发表的所有相关研究。在这里,我们试图总结医学领域中无监督的基于深度学习的注册方法的最新发展和应用。在当前的全面范围审查中,精心讨论和传达了基本和主要概念,技术,从不同观点,新颖性和未来方向的统计分析。此外,这篇评论希望帮助那些被这一领域铆接的活跃读者深入了解这一激动人心的领域。
translated by 谷歌翻译
可变形的图像配准能够在一对图像之间实现快速准确的对准,因此在许多医学图像研究中起着重要作用。当前的深度学习(DL)基础的图像登记方法通过利用卷积神经网络直接从一个图像到另一个图像的空间变换,要求地面真相或相似度量。然而,这些方法仅使用全局相似性能量函数来评估一对图像的相似性,该图像忽略了图像内的感兴趣区域(ROI)的相似性。此外,基于DL的方法通常估计直接图像的全球空间转换,这永远不会注意图像内ROI的区域空间转换。在本文中,我们介绍了一种具有区域一致性约束的新型双流转换网络,其最大化了一对图像内的ROI的相似性,并同时估计全局和区域空间转换。四个公共3D MRI数据集的实验表明,与其他最先进的方法相比,该方法可实现准确性和泛化的最佳登记性能。
translated by 谷歌翻译
病理学家需要结合不同染色病理切片的信息,以获得准确的诊断结果。可变形图像配准是融合多模式病理切片的必要技术。本文提出了一个基于混合特征的基于特征的可变形图像登记框架,用于染色的病理样品。我们首先提取密集的特征点,并通过两个深度学习功能网络执行匹配点。然后,为了进一步减少虚假匹配,提出了一种结合隔离森林统计模型和局部仿射校正模型的异常检测方法。最后,插值方法基于上述匹配点生成用于病理图像注册的DVF。我们在非刚性组织学图像注册(ANHIR)挑战的数据集上评估了我们的方法,该挑战与IEEE ISBI 2019会议共同组织。我们的技术的表现使传统方法的平均水平注册目标误差(RTRE)达到0.0034。所提出的方法实现了最先进的性能,并在评估测试数据集时将其排名1。提出的基于特征的混合特征的注册方法可能会成为病理图像注册的可靠方法。
translated by 谷歌翻译
深图像先验(DIP)是一种最近提出的技术,用于通过将重建图像拟合到未经训练的卷积神经网络的输出中来解决成像反问题。与预处理的前馈神经网络不同,相同的倾角可以概括为任意逆问题,从降级到阶段检索,同时在每个任务下提供竞争性能。DIP的主要缺点是,虽然前馈神经网络可以在单个通行证中重建图像,但DIP必须以大量的计算成本逐渐更新数百到数千个迭代的权重。在这项工作中,我们使用元学习来大规模加速基于倾斜的重建。通过学习浸入权重的适当初始化,我们证明了在一系列逆成像任务中的运行时间有10倍的改善。此外,我们证明了一个经过训练以快速重建面孔的网络也将其推广以重建自然图像贴片。
translated by 谷歌翻译
这项研究提出了一个基于移动网格参数化的端到端无监督的差异可变形登记框架。使用此参数化,可以使用其转换雅各布的决定因素和末端速度场的卷曲来建模。变形场的新模型具有三个重要优势。首先,它放松了对成本函数的显式正则化项和相应重量的需求。平滑度隐含在溶液中,从而导致物理上合理的变形场。其次,它通过适用于转换雅各布决定因素的明确约束来保证差异性。最后,它适用于心脏数据处理,因为该参数化的性质是根据​​径向和旋转成分定义变形场。通过在包括2D和3D心脏MRI扫描在内的三个不同数据集上评估拟议方法来研究算法的有效性。结果表明,所提出的框架在生成差异变换的同时优于现有的基于学习的方法和基于非学习的方法。
translated by 谷歌翻译
几乎没有学习方法的目的是训练模型,这些模型可以根据少量数据轻松适应以前看不见的任务。最受欢迎,最优雅的少学习方法之一是模型敏捷的元学习(MAML)。这种方法背后的主要思想是学习元模型的一般权重,该权重进一步适应了少数梯度步骤中的特定问题。但是,该模型的主要限制在于以下事实:更新过程是通过基于梯度的优化实现的。因此,MAML不能总是在一个甚至几个梯度迭代中将权重修改为基本水平。另一方面,使用许多梯度步骤会导致一个复杂且耗时的优化程序,这很难在实践中训练,并且可能导致过度拟合。在本文中,我们提出了HyperMAML,这是MAML的新型概括,其中更新过程的训练也是模型的一部分。也就是说,在HyperMAML中,我们没有使用梯度下降来更新权重,而是为此目的使用可训练的超级净机。因此,在此框架中,该模型可以生成重大更新,其范围不限于固定数量的梯度步骤。实验表明,超型MAML始终胜过MAML,并且在许多标准的几次学习基准测试基准中与其他最先进的技术相当。
translated by 谷歌翻译
在医学图像分析中需要进行几次学习的能力是对支持图像数据的有效利用,该数据被标记为对新类进行分类或细分新类,该任务否则需要更多的培训图像和专家注释。这项工作描述了一种完全3D原型的几种分段算法,因此,训练有素的网络可以有效地适应培训中缺乏的临床有趣结构,仅使用来自不同研究所的几个标记图像。首先,为了弥补机构在新型类别的情节适应中的广泛认识的空间变异性,新型的空间注册机制被整合到原型学习中,由分割头和空间对齐模块组成。其次,为了帮助训练观察到的不完美比对,提出了支持掩模调节模块,以进一步利用支持图像中可用的注释。使用589个骨盆T2加权MR图像的数据集分割了八个对介入计划的解剖结构的应用,该实验是针对介入八个机构的八个解剖结构的应用。结果证明了3D公式中的每种,空间登记和支持掩模条件的功效,所有这些条件都独立或集体地做出了积极的贡献。与先前提出的2D替代方案相比,不管支持数据来自相同还是不同的机构,都具有统计学意义的少量分割性能。
translated by 谷歌翻译
差异图像注册是医学图像分析中的至关重要任务。最近基于学习的图像注册方法利用卷积神经网络(CNN)学习图像对之间的空间转换并达到快速推理速度。但是,这些方法通常需要大量的培训数据来提高其概括能力。在测试时间内,基于学习的方法可能无法提供良好的注册结果,这很可能是因为培训数据集的模型过于拟合。在本文中,我们提出了连续速度场(NEVF)的神经表示,以描述两个图像之间的变形。具体而言,该神经速度场为空间中的每个点分配了一个速度向量,该速度在对复杂变形场进行建模时具有更高的灵活性。此外,我们提出了一种简单的稀疏抽样策略,以减少差异注册的记忆消耗。提出的NEVF还可以与预先训练的基于学习的模型合并,该模型的预测变形被视为优化的初始状态。在两个大规模3D MR脑扫描数据集上进行的广泛实验表明,我们提出的方法的表现优于最先进的注册方法。
translated by 谷歌翻译