最近在灾害信息学的研究证明了人工智能的实用而重要的用例,以拯救人类生命和基于社交媒体内容(文本和图像)的自然灾害期间的痛苦。虽然使用文本的显着进度,但利用图像的研究仍然相对较低。要提前基于图像的方法,我们提出了Medic(可用于:https://crisisnlp.qcri.org/medic/index.html),这是人道主义响应的最大社交媒体图像分类数据集,由71,198个图像组成在多任务学习设置中的四个不同任务。这是它的第一个数据集:社交媒体图像,灾难响应和多任务学习研究。该数据集的一个重要属性是它的高潜力,可以为多任务学习进行贡献,该研究最近从机器学习界获得了很多兴趣,并在内存,推理速度,性能和泛化能力方面显示出显着的结果。因此,所提出的数据集是用于推进基于图像的灾害管理和多任务机器学习研究的重要资源。
translated by 谷歌翻译
当地球经历全球变暖时,自然灾害,如洪水,龙卷风或野火,越来越普遍普遍。很难预测事件的何时何时会发生,所以及时的应急响应对于拯救受破坏事件危害的人的生命至关重要。幸运的是,技术可以在这些情况下发挥作用。社交媒体帖子可以用作低延迟数据源来了解灾难的进展和后果,但解析此数据无需自动化方法。在前的工作主要集中在基于文本的过滤,但基于图像和基于视频的过滤仍然很大程度上是未开发的。在这项工作中,我们介绍了一个大规模的多标签数据集,其中包含977,088个图像,43个事件和49个地方。我们提供数据集建设,统计和潜在偏差的详细信息;介绍和训练事件检测模型;在Flickr和Twitter上为数百万图像进行图像过滤实验。我们还提出了一些关于事件分析的申请,以鼓励和使未来的人道主义援助中的计算机愿景工作。代码,数据和模型可在http://incidentsdataset.csail.mit.edu上获得。
translated by 谷歌翻译
自动识别仇恨和虐待内容对于打击有害在线内容及其破坏性影响的传播至关重要。大多数现有作品通过检查仇恨语音数据集中的火车测试拆分上的概括错误来评估模型。这些数据集通常在其定义和标记标准上有所不同,从而在预测新的域和数据集时会导致模型性能差。在这项工作中,我们提出了一种新的多任务学习(MTL)管道,该管道利用MTL在多个仇恨语音数据集中同时训练,以构建一个更包含的分类模型。我们通过采用保留的方案来模拟对新的未见数据集的评估,在该方案中,我们从培训中省略了目标数据集并在其他数据集中共同培训。我们的结果始终优于现有工作的大量样本。当在预测以前看不见的数据集时,在检查火车测试拆分中的概括误差和实质性改进时,我们会表现出强烈的结果。此外,我们组装了一个新颖的数据集,称为Pubfigs,重点是美国公共政治人物的问题。我们在PubFigs的305,235美元推文中自动发现有问题的语音,并发现了对公众人物的发布行为的见解。
translated by 谷歌翻译
构建用于仇恨语音检测的基准数据集具有各种挑战。首先,因为仇恨的言论相对少见,随机抽样对诠释的推文是非常效率的发现仇恨。为了解决此问题,先前的数据集通常仅包含匹配已知的“讨厌字”的推文。然而,将数据限制为预定义的词汇表可能排除我们寻求模型的现实世界现象的部分。第二个挑战是仇恨言论的定义往往是高度不同和主观的。具有多种讨论仇恨言论的注释者可能不仅可能不同意彼此不同意,而且还努力符合指定的标签指南。我们的重点识别是仇恨语音的罕见和主体性类似于信息检索(IR)中的相关性。此连接表明,可以有效地应用创建IR测试集合的良好方法,以创建更好的基准数据集以进行仇恨语音。为了智能和有效地选择要注释的推文,我们应用{\ em汇集}和{em主动学习}的标准IR技术。为了提高注释的一致性和价值,我们应用{\ EM任务分解}和{\ EM注释器理由}技术。我们在Twitter上共享一个用于仇恨语音检测的新基准数据集,其提供比以前的数据集更广泛的仇恨覆盖。在这些更广泛形式的仇恨中测试时,我们还表现出现有检测模型的准确性的戏剧性降低。注册器理由我们不仅可以证明标签决策证明,而且还可以在建模中实现未来的双重监督和/或解释生成的工作机会。我们的方法的进一步细节可以在补充材料中找到。
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
社交媒体有可能提供有关紧急情况和突然事件的及时信息。但是,在每天发布的数百万帖子中找到相关信息可能很困难,并且开发数据分析项目通常需要时间和技术技能。这项研究提出了一种为分析社交媒体的灵活支持的方法,尤其是在紧急情况下。引入了可以采用社交媒体分析的不同用例,并讨论了从大量帖子中检索信息的挑战。重点是分析社交媒体帖子中包含的图像和文本,以及一组自动数据处理工具,用于过滤,分类和使用人类的方法来支持数据分析师的内容。这种支持包括配置自动化工具的反馈和建议,以及众包收集公民的投入。通过讨论Crowd4SDG H2020欧洲项目中开发的三个案例研究来验证结果。
translated by 谷歌翻译
Climate change has become one of the biggest challenges of our time. Social media platforms such as Twitter play an important role in raising public awareness and spreading knowledge about the dangers of the current climate crisis. With the increasing number of campaigns and communication about climate change through social media, the information could create more awareness and reach the general public and policy makers. However, these Twitter communications lead to polarization of beliefs, opinion-dominated ideologies, and often a split into two communities of climate change deniers and believers. In this paper, we propose a framework that helps identify denier statements on Twitter and thus classifies the stance of the tweet into one of the two attitudes towards climate change (denier/believer). The sentimental aspects of Twitter data on climate change are deeply rooted in general public attitudes toward climate change. Therefore, our work focuses on learning two closely related tasks: Stance Detection and Sentiment Analysis of climate change tweets. We propose a multi-task framework that performs stance detection (primary task) and sentiment analysis (auxiliary task) simultaneously. The proposed model incorporates the feature-specific and shared-specific attention frameworks to fuse multiple features and learn the generalized features for both tasks. The experimental results show that the proposed framework increases the performance of the primary task, i.e., stance detection by benefiting from the auxiliary task, i.e., sentiment analysis compared to its uni-modal and single-task variants.
translated by 谷歌翻译
社交媒体平台主持了有关每天出现的各种主题的讨论。理解所有内容并将其组织成类别是一项艰巨的任务。处理此问题的一种常见方法是依靠主题建模,但是使用此技术发现的主题很难解释,并且从语料库到语料库可能会有所不同。在本文中,我们提出了基于推文主题分类的新任务,并发布两个相关的数据集。鉴于涵盖社交媒体中最重要的讨论点的广泛主题,我们提供了最近时间段的培训和测试数据,可用于评估推文分类模型。此外,我们在任务上对当前的通用和领域特定语言模型进行定量评估和分析,这为任务的挑战和性质提供了更多见解。
translated by 谷歌翻译
社交媒体平台上有毒内容的普遍性,例如仇恨言论,冒犯性语言和厌女症,给我们的相互联系的社会带来了严重的挑战。这些具有挑战性的问题引起了自然语言处理(NLP)社区的广泛关注。在本文中,我们将提交的系统介绍给第一个阿拉伯语厌女症识别共享任务。我们研究了三个多任务学习模型及其单任务。为了编码输入文本,我们的模型依赖于预先训练的Marbert语言模型。总体获得的结果表明,我们所有提交的模型均在厌女症识别和分类任务中取得了最佳性能(排名前三的提交)。
translated by 谷歌翻译
我们提出“ AITLAS:基准竞技场” - 一个开源基准测试框架,用于评估地球观察中图像分类的最新深度学习方法(EO)。为此,我们介绍了从九种不同的最先进的体系结构得出的400多个模型的全面比较分析,并将它们与来自22个具有不同尺寸的数据集的各种多级和多标签分类任务进行比较和属性。除了完全在这些数据集上训练的模型外,我们还基于在转移学习的背景下训练的模型,利用预训练的模型变体,因为通常在实践中执行。所有提出的方法都是一般的,可以轻松地扩展到本研究中未考虑的许多其他遥感图像分类任务。为了确保可重复性并促进更好的可用性和进一步的开发,所有实验资源在内的所有实验资源,包括训练的模型,模型配置和数据集的处理详细信息(以及用于培训和评估模型的相应拆分)都在存储库上公开可用:HTTPS ://github.com/biasvariancelabs/aitlas-arena。
translated by 谷歌翻译
食源性疾病是一个严重但可以预防的公共卫生问题 - 延迟发现相关的暴发导致生产力损失,昂贵的召回,公共安全危害甚至生命丧失。尽管社交媒体是识别未报告的食源性疾病的有前途的来源,但缺乏标记的数据集来开发有效的爆发检测模型。为了加快基于机器学习的疫苗爆发检测模型的开发,我们提出了推文-FID(Tweet-Foodborne疾病检测),这是第一个用于多种食源性疾病事件检测任务的公开注释的数据集。从Twitter收集的Tweet-FID带有三个方面:Tweet类,实体类型和老虎机类型,并带有专家以及众包工人生产的标签。我们介绍了利用这三个方面的几个域任务:文本相关性分类(TRC),实体提及检测(EMD)和插槽填充(SF)。我们描述了用于支持这些任务模型开发的数据集设计,创建和标签的端到端方法。提供了这些任务的全面结果,以利用Tweet-FID数据集上的最新单项和多任务深度学习方法。该数据集为未来的Foodborne爆发检测提供了机会。
translated by 谷歌翻译
识别危机推文中的细粒度位置提到是将从社交媒体提取的情境意识信息转换为可行信息的核心。大多数事先作业都集中在识别通用地点,而不考虑其特定类型。为了促进细粒度的位置识别任务的进步,我们组装了两个推文危机数据集,并用特定的位置类型手动注释它们。第一个数据集包含来自混合危机事件的推文,而第二个数据集包含来自全球Covid-19大流行的推文。我们在域内和交叉域设置中调查在这些数据集上的序列标记的最先进的深度学习模型的性能。
translated by 谷歌翻译
社交媒体通常被用作自然灾害期间交流的生命线。传统上,自然灾害推文使用自然灾害的名称从Twitter流进行过滤,并将过滤的推文发送以进行人体注释。人类注释创建用于机器学习模型的标签集的过程是费力的,耗时的,有时不准确的,更重要的是,在大小和实时使用方面不可扩展。在这项工作中,我们使用薄弱的监督来策划一个银标准数据集。为了验证其效用,我们在弱监督的数据上训练机器学习模型,以识别三种不同类型的自然灾害,即地震,飓风和洪水。我们的结果表明,在对手动策划的金标准数据集进行分类时,经过银标准数据集训练的模型大于90%。为了启用可重现的研究和其他下游公用事业,我们为科学界发布了银标准数据集。
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
经过大量地震后,我们可以看到个人和媒体机构在社交媒体平台上发布的图像由于这些天智能手机的大规模使用而发布。这些图像可用于提供关于公共和研究群落的地震区域震荡损坏的信息,并且可能导致救援工作。本文提出了一种自动化的方法,可以在来自诸如Twitter等社交媒体平台的地震之后提取损坏的建筑图像,从而识别包含此类图像的特定用户帖子。使用传输学习和〜6500手动标记图像,我们培训了深入学习模型,以识别现场损坏的建筑物的图像。当在土耳其2020 M7.0地震发生后,在不同地区的新收购的地震图像上进行地震图像的地震图像时,训练有素的模型取得了良好的表现。此外,为了更好地了解模型如何做出决策,我们还实现了Grad-CAM方法来可视化促进决策的图像上的重要位置。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
使用文本,图像,音频,视频等多种方式的多模式深度学习系统,与单独的方式(即单向)系统相比,显示出更好的性能。多式联机学习涉及多个方面:表示,翻译,对齐,融合和共同学习。在当前多式联机学习状态下,假设是在训练和测试时间期间存在,对齐和无噪声。然而,在现实世界的任务中,通常,观察到一个或多个模式丢失,嘈杂,缺乏注释数据,具有不可靠的标签,并且在训练或测试中稀缺,或两者都稀缺。这种挑战是由称为多式联合学习的学习范例解决的。通过使用模态之间的知识传输,包括其表示和预测模型,通过从另一个(资源丰富的)方式利用来自另一(资源丰富的)模型的知识来帮助实现(资源差)模型的建模。共同学习是一个新兴地区,没有专注的评论,明确地关注共同学习所解决的所有挑战。为此,在这项工作中,我们对新兴的多式联合学习领域提供了全面的调查,尚未完整探讨。我们审查实施的实施,以克服一个或多个共同学习挑战,而不明确地将它们视为共同学习挑战。我们基于共同学习和相关实施解决的挑战,展示了多式联合学习的综合分类。用于包括最新的技术与一些应用程序和数据集一起审查。我们的最终目标是讨论挑战和观点以及未来工作的重要思想和方向,我们希望对整个研究界的有益,重点关注这一令人兴奋的领域。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译