远远超出了学习自然语言的远程相互作用,变形金刚正成为许多愿景任务的遗弃标准,具有其力量和爬钢丝。特别是在图像和文本之间的跨模型任务中,向量量化变化自动码器(VQ-VAE)被广泛用于使原始RGB图像成为一系列特征向量。为了更好地利用图像和文本之间的相关性,我们提出了一种新颖的架构,该架构包括用于文本到图像和图像到文本的特征增强的变形Autiachoder(Augvae)和双向自动回归变压器(Biart)一代。我们的Augvae在ImageNet1K验证集上显示了最先进的重建性能,以及野外未经看出图像的鲁棒性。与其他模型不同,BIART可以将图像(或文本)区分为条件参考和生成目标。 L-VERSE可以直接用于图像到文本或文本到图像生成任务,而无需任何FineTuning或额外的对象检测框架。在定量和定性实验中,L-VESERS在MS-Coco字幕上的图像到文本和文本到图像生成中,对先前的方法进行了令人印象深刻的结果。我们还评估了L-Verse架构对概念标题的可扩展性,并呈现了一般域的双向视觉语言表示学习的初始结果。代码可用:https://github.com/tgisaturday/l-verse
translated by 谷歌翻译
常规域中的文本到图像生成长期以来一直是一个开放问题,这需要强大的生成模型和跨模型理解。我们提出CogView,一个带VQ-VAE牌器的40亿参数变压器来推进此问题。我们还展示了各种下游任务的FineTuning策略,例如,风格学习,超分辨率,文本图像排名和时装设计,以及稳定预制雷岭的方法,例如,消除南损失。Cogview在模糊的MS Coco DataSet上实现最先进的FID,优于以前的基于GAN的模型和最近类似的工作Dall-e。
translated by 谷歌翻译
用于图像文本生成任务的传统方法主要是分别解决自然双向生成任务,专注于设计任务特定的框架以提高所生成的样本的质量和保真度。最近,Vision-Language预训练模型大大提高了图像到文本生成任务的性能,但仍未开发出用于文本到图像综合任务的大规模预训练模型。在本文中,我们提出了一个具有变压器模型的双向图像文本生成的统一生成的预训练框架的Ernie-Vi​​lg。基于图像量化模型,我们将图像生成和文本生成标准为在文本/图像输入上调节的自回归生成任务。双向图像文本生成建模简化了视觉和语言的语义对齐。对于文本到图像生成过程,我们进一步提出了端到端的训练方法,共同学习视觉序列发生器和图像重建。为了探讨双向文本图像生成的大规模预培训景观,我们在大规模数据集中培训了100亿参数的Ernie-Vi​​lg模型,以145百万(中文)图像 - 文本对实现了达到的状态 - 文本到图像和图像到文本任务的最佳性能,以便在MS-Coco上获取7.9的FID,用于文本到图像合成以及用于图像标题的Coco-CN和AIC-ICC的最佳结果。
translated by 谷歌翻译
Text-to-image generation has traditionally focused on finding better modeling assumptions for training on a fixed dataset. These assumptions might involve complex architectures, auxiliary losses, or side information such as object part labels or segmentation masks supplied during training. We describe a simple approach for this task based on a transformer that autoregressively models the text and image tokens as a single stream of data. With sufficient data and scale, our approach is competitive with previous domain-specific models when evaluated in a zero-shot fashion.
translated by 谷歌翻译
Evaluating and comparing text-to-image models is a challenging problem. Significant advances in the field have recently been made, piquing interest of various industrial sectors. As a consequence, a gold standard in the field should cover a variety of tasks and application contexts. In this paper a novel evaluation approach is experimented, on the basis of: (i) a curated data set, made by high-quality royalty-free image-text pairs, divided into ten categories; (ii) a quantitative metric, the CLIP-score, (iii) a human evaluation task to distinguish, for a given text, the real and the generated images. The proposed method has been applied to the most recent models, i.e., DALLE2, Latent Diffusion, Stable Diffusion, GLIDE and Craiyon. Early experimental results show that the accuracy of the human judgement is fully coherent with the CLIP-score. The dataset has been made available to the public.
translated by 谷歌翻译
培训文本到图像生成模型中的主要挑战之一是需要大量的高质量图像文本对。虽然图像样本通常很容易接近,但相关的文本描述通常需要仔细的人类标题,这是特别的 - 耗时和成本耗费。在本文中,我们提出了第一项工作来培训没有任何文本数据的文本到图像生成模型。我们的方法利用了强大的预训练剪辑模型的良好对齐的多模态语义空间:通过从图像特征生成文本特征,无缝地减轻了文本调节的要求。进行广泛的实验以说明所提出的方法的有效性。我们在标准的文本到图像生成任务中获得最先进的结果。重要的是,拟议的无语模型优于具有完整图像文本对训练的大多数现有型号。此外,我们的方法可以应用于微调预先训练的模型,它可以节省培训文本到图像生成模型的培训时间和成本。我们预先接受的模型在MS-Coco DataSet上获得竞争激烈的结果,在零拍摄的图像集中在MS-Coco DataSet上产生竞争结果,但距离最近提出的大型Dall-E型号的模型大小和培训数据大小约为1%。
translated by 谷歌翻译
随着视觉前训练的成功,我们目睹了最先进的方式,以多模式的理解和产生推动。但是,当前的预训练范式不能一次靶向所有模式(例如,文本生成和图像生成),或者需要多重设计良好的任务,从而显着限制可伸缩性。我们证明,可以通过文本和图像序列的前缀语言建模目标学习统一的模态模型。得益于简单但功能强大的预训练范式,我们提出的模型Davinci非常易于训练,可扩展到巨大的数据,并且可以适应跨模态(语言 /视觉 /视觉+语言)的各种下游任务(类型)(理解) / generation)和设置(例如,零射,微调,线性评估)具有单个统一体系结构。达文奇(Davinci)在26个理解 /发电任务的广泛范围内实现了竞争性能,并且在大多数任务上都超过了以前的统一视力语言模型,包括Imagenet分类(+1.6%),VQAV2(+1.4%)(+1.4%),可可标题生成(Bleu@@@@@ 4 +1.1%,苹果酒 +1.5%)和可可图像生成( +0.9%,FID -1.0%),在可比的模型和数据量表处。此外,我们通过在异质和广泛的分布覆盖范围内报告不同尺度的量表上的性能,为将来的研究提供了明确的基准。我们的结果建立了新的,更强的基线,以便将来在不同的数据量表上进行比较,并阐明了更广泛地比较VLP模型的困难。
translated by 谷歌翻译
A major goal of multimodal research is to improve machine understanding of images and text. Tasks include image captioning, text-to-image generation, and vision-language representation learning. So far, research has focused on the relationships between images and text. For example, captioning models attempt to understand the semantics of images which are then transformed into text. An important question is: which annotation reflects best a deep understanding of image content? Similarly, given a text, what is the best image that can present the semantics of the text? In this work, we argue that the best text or caption for a given image is the text which would generate the image which is the most similar to that image. Likewise, the best image for a given text is the image that results in the caption which is best aligned with the original text. To this end, we propose a unified framework that includes both a text-to-image generative model and an image-to-text generative model. Extensive experiments validate our approach.
translated by 谷歌翻译
我们介绍了自回归文本到图像(Parti)模型的途径,该模型生成高保真的影像图像并支持涉及复杂组成和世界知识的内容丰富的合成。 Parti将文本对图像生成视为类似于机器翻译的序列到序列建模问题,图像令牌的序列是目标输出,而不是其他语言的文本令牌。这种策略自然可以利用大型语言模型的先前工作,通过扩展数据和模型尺寸,能力和性能的持续进展。我们的方法很简单:首先,Parti使用基于变压器的图像令牌VIT-VQGAN将图像编码为离散令牌的序列。其次,我们通过将编码器二次变压器模型缩放到20B参数来实现一致的质量改进,其新的最新零弹药FID得分为7.23,而MS-Coco的FIDED得分为3.22。我们对本地化叙述以及党的详细分析(P2),这是1600多个英语提示的新的整体基准,证明了Parti在各种类别和难度方面的有效性。我们还探索并突出了我们的模型的局限性,以定义和体现关注重点领域以进一步改进。有关高分辨率图像,请参见https://parti.research.google/。
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
我们开发了一种文本到图像生成的方法,该方法由隐性视觉引导丢失和生成目标的组合驱动,该方法包含其他检索图像。与仅将文本作为输入的大多数现有文本到图像生成方法不同,我们的方法将跨模式搜索结果动态馈送到统一的训练阶段,从而提高了生成结果的质量,可控性和多样性。我们提出了一种新颖的超网调制的视觉文本编码方案,以预测编码层的重量更新,从而使视觉信息(例如布局,内容)有效地传输到相应的潜在域。实验结果表明,我们的模型以其他检索视觉数据的指导优于现有基于GAN的模型。在可可数据集上,与最先进的方法相比,我们实现了更好的$ 9.13 $,最高$ 3.5 \ times $ $。
translated by 谷歌翻译
Recently, vector quantized autoregressive (VQ-AR) models have shown remarkable results in text-to-image synthesis by equally predicting discrete image tokens from the top left to bottom right in the latent space. Although the simple generative process surprisingly works well, is this the best way to generate the image? For instance, human creation is more inclined to the outline-to-fine of an image, while VQ-AR models themselves do not consider any relative importance of each component. In this paper, we present a progressive denoising model for high-fidelity text-to-image image generation. The proposed method takes effect by creating new image tokens from coarse to fine based on the existing context in a parallel manner and this procedure is recursively applied until an image sequence is completed. The resulting coarse-to-fine hierarchy makes the image generation process intuitive and interpretable. Extensive experiments demonstrate that the progressive model produces significantly better results when compared with the previous VQ-AR method in FID score across a wide variety of categories and aspects. Moreover, the text-to-image generation time of traditional AR increases linearly with the output image resolution and hence is quite time-consuming even for normal-size images. In contrast, our approach allows achieving a better trade-off between generation quality and speed.
translated by 谷歌翻译
The recently developed discrete diffusion models perform extraordinarily well in the text-to-image task, showing significant promise for handling the multi-modality signals. In this work, we harness these traits and present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks using a single model, performing text-based, image-based, and even vision-language simultaneous generation. Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix. Moreover, we design a mutual attention module with fused embedding layer and a unified objective function to emphasise the inter-modal linkages, which are vital for multi-modality generation. Extensive experiments indicate that our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
translated by 谷歌翻译
文本到图像合成的最新进展导致了较大的经过验证的变压器,具有出色的能力,可以从给定文本产生可视化。但是,这些模型不适合专门的任务,例如故事可视化,该任务要求代理商制作一系列图像,给定相应的字幕序列,形成叙述。此外,我们发现故事可视化任务无法适应新叙事中看不见的情节和角色的概括。因此,我们首先提出了故事延续的任务,其中生成的视觉故事是在源图像上进行的,从而可以更好地对具有新角色的叙述进行更好的概括。然后,我们使用特定于(a)顺序图像生成的任务特定模块和(b)从初始帧复制相关元素的任务特定模块来增强或“复古”文本对图像合成模型。然后,我们探讨了预训练模型的全模型芬太尼以及对参数适应的及时调整。我们在两个现有数据集(PororoSV和FlintStonessV)上评估了我们的方法storydall-e,并介绍了从视频吸引数据集收集的新数据集DIDEMOSV。我们还基于生成的对抗网络(GAN)开发了一个模型故事游戏,以进行故事的延续,并将其与StoryDall-E模型进行比较,以展示我们方法的优势。我们表明,我们的复古拟合方法优于基于GAN的模型,用于故事延续,并促进从源图像中复制视觉元素,从而改善了生成的视觉故事中的连续性。最后,我们的分析表明,经过审计的变压器努力理解包含几个角色的叙述。总体而言,我们的工作表明,可以验证的文本对图像合成模型可以适应复杂和低资源的任务,例如故事延续。
translated by 谷歌翻译
随着信息中的各种方式存在于现实世界中的各种方式,多式联信息之间的有效互动和融合在计算机视觉和深度学习研究中的多模式数据的创造和感知中起着关键作用。通过卓越的功率,在多式联运信息中建模互动,多式联运图像合成和编辑近年来已成为一个热门研究主题。与传统的视觉指导不同,提供明确的线索,多式联路指南在图像合成和编辑方面提供直观和灵活的手段。另一方面,该领域也面临着具有固有的模态差距的特征的几个挑战,高分辨率图像的合成,忠实的评估度量等。在本调查中,我们全面地阐述了最近多式联运图像综合的进展根据数据模型和模型架构编辑和制定分类。我们从图像合成和编辑中的不同类型的引导方式开始介绍。然后,我们描述了多模式图像综合和编辑方法,其具有详细的框架,包括生成的对抗网络(GAN),GaN反转,变压器和其他方法,例如NERF和扩散模型。其次是在多模式图像合成和编辑中广泛采用的基准数据集和相应的评估度量的综合描述,以及分析各个优点和限制的不同合成方法的详细比较。最后,我们为目前的研究挑战和未来的研究方向提供了深入了解。与本调查相关的项目可在HTTPS://github.com/fnzhan/mise上获得
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
扩散模型(DMS)显示出高质量图像合成的巨大潜力。但是,当涉及到具有复杂场景的图像时,如何正确描述图像全局结构和对象细节仍然是一项具有挑战性的任务。在本文中,我们提出了弗里多(Frido),这是一种特征金字塔扩散模型,该模型执行了图像合成的多尺度粗到1个降解过程。我们的模型将输入图像分解为依赖比例的矢量量化特征,然后是用于产生图像输出的粗到细门。在上述多尺度表示阶段,可以进一步利用文本,场景图或图像布局等其他输入条件。因此,还可以将弗里多应用于条件或跨模式图像合成。我们对各种无条件和有条件的图像生成任务进行了广泛的实验,从文本到图像综合,布局到图像,场景环形图像到标签形象。更具体地说,我们在五个基准测试中获得了最先进的FID分数,即可可和开阔图像的布局到图像,可可和视觉基因组的场景环形图像以及可可的标签对图像图像。 。代码可在https://github.com/davidhalladay/frido上找到。
translated by 谷歌翻译
近年来,根据Vision-Language预训练(VLP),我们在图像标题任务中掌握了显着的性能提升。比例被认为是这一进步的重要因素。然而,大多数现有工作仅侧重于预训练的变压器,在大约400万图像上具有中等大小(例如,12或24层)。在本文中,我们呈现柠檬,一个大规模的图像标题器,并为图像标题的VLP的缩放行为提供第一个实证研究。我们使用最先进的VINVL模型作为我们的参考模型,它由图像特征提取器和变压器模型组成,并将变压器上下放大,模型大小范围从13到675万参数。在数据方面,我们通过高达200万图像文本对进行实验,该对基于图像的Alt属性自动从Web自动收集(称为ALT200M)。广泛的分析有助于将性能趋势表征为模型大小和预训练数据尺寸增加。我们还比较不同的培训配方,特别是在大规模嘈杂数据上培训。结果,柠檬在几个主要图像标题基准上实现了新的技术状态,包括Coco标题,Nocaps和概念标题。我们还显示柠檬可以在以零拍摄方式使用时生成带有长尾视觉概念的标题。
translated by 谷歌翻译
我们介绍了文本到图像生成的矢量量化扩散(VQ-扩散)模型。该方法基于矢量量化变分性AutoEncoder(VQ-VAE),其潜像通过最近开发的去噪扩散概率(DDPM)的条件变体为基础。我们发现这种潜在空间方法非常适合于图像到图像生成任务,因为它不仅消除了具有现有方法的单向偏差,还允许我们结合掩模和更换的扩散策略,以避免积累错误,这是现有方法的严重问题。我们的实验表明,与具有类似数量的参数数量的传统自回归(AR)模型相比,VQ扩散产生明显更好的文本到图像生成结果。与以前的基于GAN的文本到图像方法相比,我们的VQ扩散可以通过大边缘处理更复杂的场景并提高合成的图像质量。最后,我们表明我们的方法中的图像生成计算可以通过Reparameter化进行高效。利用传统的AR方法,文本到图像生成时间随输出图像分辨率线性增加,因此即使对于正常尺寸图像也是相当耗时的。 VQ-扩散使我们能够在质量和速度之间实现更好的权衡。我们的实验表明,具有Reparameterization的VQ扩散模型比传统的AR方法快15倍,同时实现更好的图像质量。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译