我们先前的实验表明,人类和机器似乎采用了不同的方法来歧视说话者歧视,尤其是在说话风格可变性的情况下。实验检查了阅读与对话演讲。听众专注于特定于说话者的特质,同时“一起告诉说话者”,以及“告诉说话者分开”时共享声学空间的相对距离。但是,无论目标或非目标试验如何,自动扬声器验证(ASV)系统使用相同的损失函数。为了在风格变异性的存在下提高ASV性能,从人类感知中学到的见解被用来设计一种新的训练损失功能,我们称为“ CLLRCE损失”。 CLLRCE损失既使用说话者特异性的特质,又使用扬声器之间的相对声学距离来训练ASV系统。当使用UCLA扬声器可变性数据库时,在X-Vector和条件设置中,CLLCE损失使EER显着相对改善1-66%,而MindCF分别与1-31%和1-56%相比,相比之下X矢量基线。使用涉及不同的对话语音任务的SITW评估任务,拟议的损失与自我发项式调节结合,导致EER的显着相对改善2-5%,而MindCF则比基线高6-12%。在SITW案例中,绩效的改善仅与调理保持一致。
translated by 谷歌翻译
我们提出了一种提取说话者嵌入的方法,这些嵌入者对文本独立的说话者验证中的口语风格变化很强。通常,嵌入提取的扬声器包括训练DNN进行扬声器分类以及使用瓶颈功能作为扬声器表示。这样的网络具有一个合并层,可以通过在所有话语框架上计算统计数据,以相等的权重来转换框架级别为话语级特征。但是,自动锻炼的嵌入执行加权池,使其重量与在扬声器分类任务中框架的重要性相对应。熵可以捕获由于说话样式变化而导致的声学变化。因此,提出了一个基于熵的变量帧速率向量作为自我发项层的外部条件向量,以向网络提供可以解决样式效应的信息。这项工作探讨了五种不同的调理方法。最好的调理方法,与门控的串联,在12/23任务中为X-Vector基线提供了统计学上的显着改进,并且在使用UCLA扬声器可变性数据库时,与11/23任务中的基线相同。在9/23任务中,它也明显胜过自我注意力,而在1/23的任务中也更糟。该方法还显示了SITW的多扬声器方案的显着改善。
translated by 谷歌翻译
我们引入了一种新的自动评估方法,用于说话者相似性评估,这与人类感知得分一致。现代神经文本到语音模型需要大量的干净训练数据,这就是为什么许多解决方案从单个扬声器模型转换为在许多不同扬声器的示例中训练的解决方案的原因。多扬声器模型带来了新的可能性,例如更快地创建新声音,也是一个新问题 - 扬声器泄漏,其中合成示例的扬声器身份可能与目标扬声器的示例不符。当前,发现此问题的唯一方法是通过昂贵的感知评估。在这项工作中,我们提出了一种评估说话者相似性的自动方法。为此,我们扩展了有关说话者验证系统的最新工作,并评估不同的指标和说话者嵌入模型如何以隐藏的参考和锚(Mushra)分数反映多个刺激。我们的实验表明,我们可以训练一个模型来预测扬声器嵌入的扬声器相似性,其精度为0.96的扬声器嵌入,并且在话语级别上最高0.78 Pearson分数。
translated by 谷歌翻译
Voice anti-spoofing systems are crucial auxiliaries for automatic speaker verification (ASV) systems. A major challenge is caused by unseen attacks empowered by advanced speech synthesis technologies. Our previous research on one-class learning has improved the generalization ability to unseen attacks by compacting the bona fide speech in the embedding space. However, such compactness lacks consideration of the diversity of speakers. In this work, we propose speaker attractor multi-center one-class learning (SAMO), which clusters bona fide speech around a number of speaker attractors and pushes away spoofing attacks from all the attractors in a high-dimensional embedding space. For training, we propose an algorithm for the co-optimization of bona fide speech clustering and bona fide/spoof classification. For inference, we propose strategies to enable anti-spoofing for speakers without enrollment. Our proposed system outperforms existing state-of-the-art single systems with a relative improvement of 38% on equal error rate (EER) on the ASVspoof2019 LA evaluation set.
translated by 谷歌翻译
在这项工作中,我们对情感和压力环境中的文本独立扬声器验证性能进行了实证对比研究。这项工作结合了浅架构的深层模型,导致新的混合分类器。利用了四种不同的混合模型:深神经网络隐藏式马尔可夫模型(DNN-HMM),深神经网络 - 高斯混合模型(DNN-GMM),高斯混合模型 - 深神经网络(GMM-DNN)和隐藏的马尔可夫模型-Deep神经网络(HMM-DNN)。所有模型都基于新颖的实施架构。比较研究使用了三个不同的语音数据集:私人阿拉伯数据集和两个公共英语数据库,即在模拟和实际压力下的演讲(Susas)和情感语音和歌曲(Ravdess)的ryerson视听数据库。上述混合模型的测试结果表明,所提出的HMM-DNN利用情绪和压力环境中的验证性能。结果还表明,HMM-DNN在曲线(AUC)评估度量下的相同错误率(eer)和面积方面优于所有其他混合模型。基于三个数据集的平均所产生的验证系统分别基于HMM-DNN,DNN-HMM,DNN-GMM和GMM-DNN产生7.19%,16.85%,11.51%和11.90%的eERs。此外,我们发现,与两个谈话环境中的所有其他混合模型相比,DNN-GMM模型展示了最少的计算复杂性。相反,HMM-DNN模型需要最多的培训时间。调查结果还证明了EER和AUC值在比较平均情绪和压力表演时依赖于数据库。
translated by 谷歌翻译
情绪转换(EVC)寻求转换话语的情绪状态,同时保留语言内容和扬声器身份。在EVC,情绪通常被视为离散类别,忽略了言论也传达了听众可以感知的各种强度水平的情绪。在本文中,我们的目标是明确地表征和控制情绪强度。我们建议解开语言内容的扬声器风格,并将扬声器风格编码成一个嵌入的嵌入空间,形成情绪嵌入的原型。我们进一步从情感标记的数据库中了解实际的情感编码器,并研究使用相对属性来表示细粒度的情绪强度。为确保情绪可理解性,我们将情感分类损失和情感嵌入了EVC网络培训中的相似性损失。根据需要,所提出的网络控制输出语音中的细粒度情绪强度。通过目标和主观评估,我们验证了建议网络的情感表达和情感强度控制的有效性。
translated by 谷歌翻译
本文介绍了第一个致力于2020挑战的结果和分析,重点是开发语音技术的匿名解决方案。我们提供了对提交的系统和评估结果的分析,提供了挑战设计的系统概述。特别是,我们描述了用于系统开发和评估的语音匿名任务和数据集。此外,我们呈现不同的攻击模型和相关目标和主观评估指标。我们介绍了两个匿名化的基线,并提供了由挑战参与者开发的匿名化系统的摘要描述。我们向基线和提交的系统报告客观和主观评估结果。此外,我们提出了作为评估后分析的一部分开发的替代隐私度量和攻击模型的实验结果。最后,我们总结了我们的见解和观察,这将影响下一个语音普遍挑战版的设计和未来语音匿名化研究的某些方向。
translated by 谷歌翻译
自动扬声器识别算法通常使用预定义的过滤库,例如MEL频率和伽马酮滤波器,以表征语音音频。但是,已经观察到使用这些滤纸提取的功能对各种音频降解没有弹性。在这项工作中,我们提出了一种基于学习的技术,以从大量的语音音频中推断出滤纸设计。这种过滤库的目的是提取特征在非理想的音频条件下(例如退化,持续时间短和多语言语音)的功能。为此,1D卷积神经网络旨在直接从原始的语音音频中学习一个名为deepvox的时间域滤纸。其次,开发了一种自适应三重态挖掘技术,以有效地挖掘最适合训练过滤器的数据样本。第三,对DeepVox FilterBanks进行的详细消融研究揭示了提取特征中的声源和声带特征的存在。 Voxceleb2,NIST SRE 2008、2010和2018和Fisher Speech数据集的实验结果证明了DeepVox特征在各种退化,短期和多语言语音中的功效。 DeepVox的功能还显示出可提高现有说话者识别算法的性能,例如XVECTOR-PLDA和IVECTOR-PLDA。
translated by 谷歌翻译
通过语音转换(VC)的数据增强已成功应用于仅可用于目标扬声器的中性数据时,已成功地应用于低资源表达文本到语音(TTS)。尽管VC的质量对于这种方法至关重要,但学习稳定的VC模型是一项挑战,因为在低资源场景中的数据量受到限制,并且高度表达的语音具有很大的声学变化。为了解决这个问题,我们提出了一种新型的数据增强方法,该方法结合了变化和VC技术。由于换挡数据的增强功能可以覆盖各种音高动态,因此即使只有目标扬声器中性数据的1000个话语,它也可以极大地稳定VC和TTS模型的训练。主观测试结果表明,与常规方法相比,具有拟议方法的基于快速2的情绪TTS系统改善了自然性和情绪相似性。
translated by 谷歌翻译
The success of deep neural networks requires both high annotation quality and massive data. However, the size and the quality of a dataset are usually a trade-off in practice, as data collection and cleaning are expensive and time-consuming. Therefore, automatic noisy label detection (NLD) techniques are critical to real-world applications, especially those using crowdsourcing datasets. As this is an under-explored topic in automatic speaker verification (ASV), we present a simple but effective solution to the task. First, we compare the effectiveness of various commonly used metric learning loss functions under different noise settings. Then, we propose two ranking-based NLD methods, inter-class inconsistency and intra-class inconsistency ranking. They leverage the inconsistent nature of noisy labels and show high detection precision even under a high level of noise. Our solution gives rise to both efficient and effective cleaning of large-scale speaker recognition datasets.
translated by 谷歌翻译
最近,盲目的语音分离(BSS)和目标语音提取(TSE)的表现已取得了长足的进步。但是,大多数作品都专注于相对控制的条件,例如阅读语音。在更现实的情况下,性能可能会降低。引起这种降解的因素之一可能是固有的说话者变异性,例如情绪,通常在现实的语音中发生。在本文中,我们研究了情绪对TSE和BSS的影响。我们创建了一个新的测试数据集,以评估TSE和BSS。该数据集结合了Librispeech和Ryerson Audio-Visual Visual Espections and Song(Ravdess)。通过受控的实验,我们可以分析不同情绪对BSS和TSE性能的影响。我们观察到BSS对情绪相对强大,而TSE需要识别和提取目标说话者的语音,对情绪更为敏感。在比较演讲者验证实验中,我们表明,在处理情感语音时,确定目标扬声器可能特别具有挑战性。使用我们的发现,我们概述了可能改善BSS和TSE系统对情感语音的鲁棒性的潜在方向。
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
扬声器日流是一个标签音频或视频录制的任务,与扬声器身份或短暂的任务标记对应于扬声器标识的类,以识别“谁谈到何时发表讲话”。在早期,对MultiSpeaker录音的语音识别开发了扬声器日益衰退算法,以使扬声器自适应处理能够实现扬声器自适应处理。这些算法还将自己的价值作为独立应用程序随着时间的推移,为诸如音频检索等下游任务提供特定于扬声器的核算。最近,随着深度学习技术的出现,这在讲话应用领域的研究和实践中引起了革命性的变化,对扬声器日益改善已经进行了快速进步。在本文中,我们不仅审查了扬声器日益改善技术的历史发展,而且还审查了神经扬声器日益改善方法的最新进步。此外,我们讨论了扬声器日复速度系统如何与语音识别应用相结合,以及最近深度学习的激增是如何引领联合建模这两个组件互相互补的方式。通过考虑这种令人兴奋的技术趋势,我们认为本文对社区提供了有价值的贡献,以通过巩固具有神经方法的最新发展,从而促进更有效的扬声器日益改善进一步进展。
translated by 谷歌翻译
可以处理各种扬声器和声学条件的模型在语音情感识别(Ser)中至关重要。通常,这些模型往往会在培训期间呈现扬声器或声学条件时显示混合结果。本文调查了交叉组件数据互补和数据增强对Ser模型的影响(从相同的语料库中的测试设置)和不匹配(从不同的语料库测试)条件。介绍了使用六种情绪语音集团的调查,其中包括单一和多个扬声器以及情感风格的变化(作用,引发,自然)和记录条件。观察结果表明,正如预期的那样,在单一语料库上培训的模型在匹配条件下表现最佳,而性能在不匹配的条件下减少10-40%,具体取决于语料库特定功能。在混合语料库上培训的型号在不匹配的上下文中可以更稳定,与匹配条件中的单个语料库模型相比,性能减少的范围为1%至8%。数据增强产生额外的收益高达4%,似乎有利于比匹配的不匹配条件。
translated by 谷歌翻译
语音触发检测是一项重要的任务,它可以在目标用户说关键字短语时激活语音助手。通常对探测器进行语音数据培训,独立于说话者信息,并用于语音触发检测任务。但是,这样的说话者独立语音触发探测器通常会遭受绩效降低,因为代表性不足的群体,例如重音说话者。在这项工作中,我们提出了一个新颖的语音触发探测器,该触发探测器可以使用目标扬声器中的少量话语来提高检测准确性。我们提出的模型采用编码器架构。尽管编码器执行扬声器独立语音触发检测,但类似于传统检测器,解码器预测了每种话语的个性化嵌入。然后,获得个性化的语音触发分数作为在注册话语的嵌入与测试话语之间的相似性得分。个性化的嵌入允许在计算语音触发评分时适应目标扬声器的语音,从而提高语音触发检测精度。实验结果表明,与基线扬声器独立语音触发模型相比,所提出的方法相对降低(FRR)的相对降低38%。
translated by 谷歌翻译
Speaker embedding extractors significantly influence the performance of clustering-based speaker diarisation systems. Conventionally, only one embedding is extracted from each speech segment. However, because of the sliding window approach, a segment easily includes two or more speakers owing to speaker change points. This study proposes a novel embedding extractor architecture, referred to as a high-resolution embedding extractor (HEE), which extracts multiple high-resolution embeddings from each speech segment. Hee consists of a feature-map extractor and an enhancer, where the enhancer with the self-attention mechanism is the key to success. The enhancer of HEE replaces the aggregation process; instead of a global pooling layer, the enhancer combines relative information to each frame via attention leveraging the global context. Extracted dense frame-level embeddings can each represent a speaker. Thus, multiple speakers can be represented by different frame-level features in each segment. We also propose an artificially generating mixture data training framework to train the proposed HEE. Through experiments on five evaluation sets, including four public datasets, the proposed HEE demonstrates at least 10% improvement on each evaluation set, except for one dataset, which we analyse that rapid speaker changes less exist.
translated by 谷歌翻译
在法医语音比较中,扬声器的嵌入在过去十年中已广泛流行。大多数审计的扬声器嵌入式嵌入都经过英语语料库进行培训,因为它很容易访问。因此,语言依赖性可能是自动法医语音比较的重要因素,尤其是当目标语言在语言上非常不同时。有许多商业系统可用,但是它们的模型主要接受与目标语言不同的语言(主要是英语)的培训。在低资源语言的情况下,开发用于法医目的的语料库,其中包含足够的扬声器来训练深度学习模型是昂贵的。这项研究旨在调查是否可以在目标低资源语言(匈牙利语)上使用预先培训的英语语料库的模型,与模型不同。另外,通常没有犯罪者(未知的扬声器)获得多个样本。因此,在有或没有说话者入学率的嫌疑人(已知)扬声器的情况下对样品进行比较。应用了两个语料库,这些语料库是专门用于法医目的的,第三个是用于传统演讲者验证的第三个语料库。使用了两种基于深度学习的扬声器嵌入向量提取方法:X-Vector和Ecapa-TDNN。说话者验证在可能性比率框架中进行了评估。在语言组合(建模,LR校准,评估)之间进行了比较。通过MinCllr和EER指标评估了结果。发现该模型以不同的语言进行了预先训练,但是在具有大量扬声器的语料库上,在语言不匹配的样本上表现良好。还检查了样本持续时间和口语样式的影响。发现相关样本的持续时间越长,性能就越好。另外,如果采用各种口语样式,则没有真正的区别。
translated by 谷歌翻译
使用未转录的参考样本来克隆说话者的声音是现代神经文本到语音(TTS)方法的巨大进步之一。最近还提出了模仿转录参考音频的韵律的方法。在这项工作中,我们首次将这两项任务与话语级别的扬声器嵌入在一起,首次将这两个任务融合在一起。我们进一步引入了一个轻巧的对准器,用于提取细粒度的韵律特征,可以在几秒钟内对单个样品进行填充。我们表明,正如我们的客观评估和人类研究表明,我们可以独立地独立地独立语言参考的声音以及与原始声音和韵律高度相似的韵律的韵律,正如我们的客观评估和人类研究表明。我们的所有代码和训练有素的模型都可以以及静态和交互式演示。
translated by 谷歌翻译
在本文中,我们提出了一种解决方案,以允许扬声器条件语音模型,例如VoiceFilter-Lite,以支持单个通过中的任意数量的注册用户。这是通过使用多个扬声器嵌入的注意机制来实现,以计算单个细小嵌入,然后将其用作模型的侧面输入。我们实现了多用户VoiceFilter-Lite并为三个任务进行了评估:(1)流自动语音识别(ASR)任务; (2)独立于文本的扬声器验证任务; (3)个性化关键级检测任务,其中ASR必须在嘈杂的环境中检测来自多个注册用户的关键次数。我们的实验表明,在最多四个注册的用户中,多用户VoiceFilter-Lite能够在具有重叠语音时显着降低语音识别和扬声器验证错误,而不会影响其他声学条件下的性能。这种细心的扬声器嵌入方法也可以轻松应用于其他扬声器条件模型,如个人VAD和个性化ASR。
translated by 谷歌翻译
这项工作探讨了在不存在的人类发声声中合成语音的任务。我们称之为此任务“扬声器生成”,并呈现Tacosawn,一个在此任务中竞争地执行的系统。Tacosawn是一种基于重复的关注文本到语音模型,了解备用空间的发行版,这使得新颖和各种扬声器采样。我们的方法易于实现,并且不需要从扬声器ID系统转移学习。我们呈现客观和主观指标,用于评估此任务的表现,并证明我们所提出的客观指标与人类对扬声器相似性相关联。我们的演示页面上有音频样本。
translated by 谷歌翻译