Although various methods have been proposed for multi-label classification, most approaches still follow the feature learning mechanism of the single-label (multi-class) classification, namely, learning a shared image feature to classify multiple labels. However, we find this One-shared-Feature-for-Multiple-Labels (OFML) mechanism is not conducive to learning discriminative label features and makes the model non-robustness. For the first time, we mathematically prove that the inferiority of the OFML mechanism is that the optimal learned image feature cannot maintain high similarities with multiple classifiers simultaneously in the context of minimizing cross-entropy loss. To address the limitations of the OFML mechanism, we introduce the One-specific-Feature-for-One-Label (OFOL) mechanism and propose a novel disentangled label feature learning (DLFL) framework to learn a disentangled representation for each label. The specificity of the framework lies in a feature disentangle module, which contains learnable semantic queries and a Semantic Spatial Cross-Attention (SSCA) module. Specifically, learnable semantic queries maintain semantic consistency between different images of the same label. The SSCA module localizes the label-related spatial regions and aggregates located region features into the corresponding label feature to achieve feature disentanglement. We achieve state-of-the-art performance on eight datasets of three tasks, \ie, multi-label classification, pedestrian attribute recognition, and continual multi-label learning.
translated by 谷歌翻译
步行属性识别旨在将多个属性分配给由视频监控摄像机捕获的一个行人图像。虽然提出了许多方法并进行了巨大的进展,但我们认为现在是时候退回和分析该地区的现状。我们回顾并重新思考从三个角度来看最近的进展。首先,鉴于人们没有明确和完整的行人属性识别定义,我们正式定义和区分步行属性识别与其他类似任务。其次,根据拟议的定义,我们暴露了现有数据集的局限性,违反了学术规范,并与实际行业申请的基本要求不一致。因此,我们提出了两个数据集,Peta \ TextSubscript {$ zs $}和rap \ textsubscript {$ zs $},在行人身份上的零拍设置之后构建。此外,我们还为未来的行人属性数据集建设介绍了几种现实标准。最后,我们重新实现现有的最先进的方法,并引入强大的基线方法,以提供可靠的评估和公平的比较。实验是在四个现有数据集和两个拟议的数据集中进行,以衡量行人属性识别的进展情况。
translated by 谷歌翻译
由于特定属性的定位不准确,监控场景中的行人属性识别仍然是一个具有挑战性的任务。在本文中,我们提出了一种基于注意力(VALA)的新型视图 - 属性定位方法,其利用查看信息来指导识别过程,专注于对特定属性对应区域的特定属性和注意机制。具体地,查看信息由视图预测分支利用,以生成四个视图权重,表示来自不同视图的属性的信心。然后将视图重量交付回撰写以撰写特定的视图属性,该属性将参与和监督深度特征提取。为了探索视图属性的空间位置,引入区域关注来聚合空间信息并编码视图特征的通道间依赖性。随后,特定于细小的特定属性特定区域是本地化的,并且通过区域关注获得了来自不同空间位置的视图属性的区域权重。通过将视图权重与区域权重组合来获得最终视图 - 属性识别结果。在三个宽数据集(RAP,RAPV2和PA-100K)上的实验证明了与最先进的方法相比我们的方法的有效性。
translated by 谷歌翻译
The task of multi-label image recognition is to predict a set of object labels that present in an image. As objects normally co-occur in an image, it is desirable to model the label dependencies to improve the recognition performance. To capture and explore such important dependencies, we propose a multi-label classification model based on Graph Convolutional Network (GCN). The model builds a directed graph over the object labels, where each node (label) is represented by word embeddings of a label, and GCN is learned to map this label graph into a set of inter-dependent object classifiers. These classifiers are applied to the image descriptors extracted by another sub-net, enabling the whole network to be end-to-end trainable. Furthermore, we propose a novel re-weighted scheme to create an effective label correlation matrix to guide information propagation among the nodes in GCN. Experiments on two multi-label image recognition datasets show that our approach obviously outperforms other existing state-of-the-art methods. In addition, visualization analyses reveal that the classifiers learned by our model maintain meaningful semantic topology.
translated by 谷歌翻译
计算机视觉任务可以从估计突出物区域和这些对象区域之间的相互作用中受益。识别对象区域涉及利用预借鉴模型来执行对象检测,对象分割和/或对象姿势估计。但是,由于以下原因,在实践中不可行:1)预用模型的训练数据集的对象类别可能不会涵盖一般计算机视觉任务的所有对象类别,2)佩戴型模型训练数据集之间的域间隙并且目标任务的数据集可能会影响性能,3)预磨模模型中存在的偏差和方差可能泄漏到导致无意中偏置的目标模型的目标任务中。为了克服这些缺点,我们建议利用一系列视频帧捕获一组公共对象和它们之间的相互作用的公共基本原理,因此视频帧特征之间的共分割的概念可以用自动的能力装配模型专注于突出区域,以最终的方式提高潜在的任务的性能。在这方面,我们提出了一种称为“共分割激活模块”(COSAM)的通用模块,其可以被插入任何CNN,以促进基于CNN的任何CNN的概念在一系列视频帧特征中的关注。我们在三个基于视频的任务中展示Cosam的应用即1)基于视频的人Re-ID,2)视频字幕分类,并证明COSAM能够在视频帧中捕获突出区域,从而引导对于显着的性能改进以及可解释的关注图。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
Recent years witnessed the breakthrough of face recognition with deep convolutional neural networks. Dozens of papers in the field of FR are published every year. Some of them were applied in the industrial community and played an important role in human life such as device unlock, mobile payment, and so on. This paper provides an introduction to face recognition, including its history, pipeline, algorithms based on conventional manually designed features or deep learning, mainstream training, evaluation datasets, and related applications. We have analyzed and compared state-of-the-art works as many as possible, and also carefully designed a set of experiments to find the effect of backbone size and data distribution. This survey is a material of the tutorial named The Practical Face Recognition Technology in the Industrial World in the FG2023.
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.
translated by 谷歌翻译
即使在几个例子中,人类能够学会识别新物品。相比之下,培训基于深度学习的对象探测器需要大量的注释数据。为避免需求获取和注释这些大量数据,但很少拍摄的对象检测旨在从目标域中的新类别的少数对象实例中学习。在本调查中,我们在几次拍摄对象检测中概述了本领域的状态。我们根据培训方案和建筑布局分类方法。对于每种类型的方法,我们描述了一般的实现以及提高新型类别性能的概念。在适当的情况下,我们在这些概念上给出短暂的外卖,以突出最好的想法。最终,我们介绍了常用的数据集及其评估协议,并分析了报告的基准结果。因此,我们强调了评估中的共同挑战,并确定了这种新兴对象检测领域中最有前景的电流趋势。
translated by 谷歌翻译
在本文中,我们提出了一个新颖的端到端集团协作学习网络,称为GCONET+,该网络可以有效,有效地(250 fps)识别自然场景中的共呈含量对象。提出的GCONET+基于以下两个基本标准,通过采矿共识表示,实现了共同降低对象检测(COSOD)的新最新性能:1)组内紧凑型,以更好地提高共同空位之间的一致性通过使用我们的新颖组亲和力模块(GAM)捕获其固有共享属性的对象; 2)组间可分离性通过引入我们的新组协作模块(GCM)条件对不一致的共识进行调理,从而有效抑制嘈杂对象对输出的影响。为了进一步提高准确性,我们设计了一系列简单但有效的组件,如下所示:i)在语义级别促进模型学习的经常性辅助分类模块(RACM); ii)一个置信度增强模块(CEM)帮助模型提高最终预测的质量; iii)基于小组的对称三重态(GST)损失指导模型以学习更多的判别特征。对三个具有挑战性的基准测试(即可口可乐,COSOD3K和COSAL2015)进行了广泛的实验,这表明我们的GCONET+优于现有的12个尖端模型。代码已在https://github.com/zhengpeng7/gconet_plus上发布。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
很少有分段旨在学习一个细分模型,该模型可以推广到只有几个培训图像的新课程。在本文中,我们提出了一个交叉引用和局部全球条件网络(CRCNET),以进行几次分割。与以前仅预测查询图像掩码的作品不同,我们提出的模型同时对支持图像和查询图像进行了预测。我们的网络可以更好地在两个图像中使用交叉引用机制找到同时出现的对象,从而有助于少量分割任务。为了进一步改善功能比较,我们开发了一个局部全球条件模块,以捕获全球和本地关系。我们还开发了一个掩模修补模块,以重新完善前景区域的预测。Pascal VOC 2012,MS Coco和FSS-1000数据集的实验表明,我们的网络实现了新的最新性能。
translated by 谷歌翻译
对象通常与多个属性相关联,这些属性通常显示出很高的相关性。建模属性之间的复杂关系为多属性学习带来了巨大的挑战。本文提出了一个名为label2label的简单而通用的框架,以利用复杂的属性相关性。 Label2Label是从语言建模的角度来进行多属性预测的首次尝试。具体而言,它将每个属性标签视为描述样本的“单词”。当每个样本带有多个属性标签注释时,这些“单词”自然会形成无序但有意义的“句子”,该句子描述了相应样本的语义信息。受到NLP预训练语言模型的显着成功的启发,Label2Label引入了图像条件的掩盖语言模型,该模型随机掩盖了标签“句子”中的一些“单词”令牌,并旨在基于“蒙版”恢复它们。句子和图像特征传达的上下文。我们的直觉是,如果神经网可以根据上下文和其余属性提示推断丢失的属性,那么实例的属性关系就会得到很好的掌握。 Label2Label在概念上是简单且经验强大的。与高度自定义的特定领域方法相比,我们的方法在不融合特定于任务的先验知识和高度专业的网络设计的情况下,在三个不同的多属性学习任务上获得了最新的结果。代码可从https://github.com/li-wanhua/label2label获得。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
基于无人机(UAV)基于无人机的视觉对象跟踪已实现了广泛的应用,并且由于其多功能性和有效性而引起了智能运输系统领域的越来越多的关注。作为深度学习革命性趋势的新兴力量,暹罗网络在基于无人机的对象跟踪中闪耀,其准确性,稳健性和速度有希望的平衡。由于开发了嵌入式处理器和深度神经网络的逐步优化,暹罗跟踪器获得了广泛的研究并实现了与无人机的初步组合。但是,由于无人机在板载计算资源和复杂的现实情况下,暹罗网络的空中跟踪仍然在许多方面都面临严重的障碍。为了进一步探索基于无人机的跟踪中暹罗网络的部署,这项工作对前沿暹罗跟踪器进行了全面的审查,以及使用典型的无人机板载处理器进行评估的详尽无人用分析。然后,进行板载测试以验证代表性暹罗跟踪器在现实世界无人机部署中的可行性和功效。此外,为了更好地促进跟踪社区的发展,这项工作分析了现有的暹罗跟踪器的局限性,并进行了以低弹片评估表示的其他实验。最后,深入讨论了基于无人机的智能运输系统的暹罗跟踪的前景。领先的暹罗跟踪器的统一框架,即代码库及其实验评估的结果,请访问https://github.com/vision4robotics/siamesetracking4uav。
translated by 谷歌翻译
多标签图像识别是一个基本又实用的任务,因为真实世界的图像固有地拥有多个语义标签。然而,由于输入图像和输出标签空间的复杂性,难以收集大规模的多标签注释。为了降低注释成本,我们提出了一种结构化语义传输(SST)框架,使得能够培训具有部分标签的多标签识别模型,即,仅在每个图像中丢失其他标签(也称为未知标签)。该框架由两个互补传输模块组成,探索图像内和交叉图像语义相关性,以传输已知标签的知识,以为未知标签生成伪标签。具体地,一个图像内语义传输模块学习特定于图像的标签共出矩阵,并将已知的标签映射到基于该矩阵的补充未知标签。同时,交叉图像传输模块学习特定于类别的特征相似性,并帮助您具有高相似之处的补充未知标签。最后,已知和生成的标签都用于训练多标签识别模型。对Microsoft Coco,Visual Genome和Pascal VOC数据集的广泛实验表明,所提出的SST框架在当前最先进的算法上获得了卓越的性能。代码可用于\ url {https:/github.com/hcplab-sysu/sst-ml -pl
translated by 谷歌翻译
场景分类已确定为一个具有挑战性的研究问题。与单个对象的图像相比,场景图像在语义上可能更为复杂和抽象。它们的差异主要在于识别的粒度水平。然而,图像识别是场景识别良好表现的关键支柱,因为从对象图像中获得的知识可用于准确识别场景。现有场景识别方法仅考虑场景的类别标签。但是,我们发现包含详细的本地描述的上下文信息也有助于允许场景识别模型更具歧视性。在本文中,我们旨在使用对象中编码的属性和类别标签信息来改善场景识别。基于属性和类别标签的互补性,我们提出了一个多任务属性识别识别(MASR)网络,该网络学习一个类别嵌入式,同时预测场景属性。属性采集和对象注释是乏味且耗时的任务。我们通过提出部分监督的注释策略来解决该问题,其中人类干预大大减少。该策略为现实世界情景提供了更具成本效益的解决方案,并且需要减少注释工作。此外,考虑到对象检测到的分数所指示的重要性水平,我们重新进行了权威预测。使用提出的方法,我们有效地注释了四个大型数据集的属性标签,并系统地研究场景和属性识别如何相互受益。实验结果表明,与最先进的方法相比
translated by 谷歌翻译
Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a Criss-Cross Network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies. Besides, a category consistent loss is proposed to enforce the criss-cross attention module to produce more discriminative features. Overall, CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the proposed recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the non-local block. 3) The state-of-the-art performance. We conduct extensive experiments on semantic segmentation benchmarks including Cityscapes, ADE20K, human parsing benchmark LIP, instance segmentation benchmark COCO, video segmentation benchmark CamVid. In particular, our CCNet achieves the mIoU scores of 81.9%, 45.76% and 55.47% on the Cityscapes test set, the ADE20K validation set and the LIP validation set respectively, which are the new state-of-the-art results. The source codes are available at https://github.com/speedinghzl/CCNet.
translated by 谷歌翻译
对象检测是计算机视觉和图像处理中的基本任务。基于深度学习的对象探测器非常成功,具有丰富的标记数据。但在现实生活中,它不保证每个对象类别都有足够的标记样本进行培训。当训练数据有限时,这些大型物体探测器易于过度装备。因此,有必要将几次拍摄的学习和零射击学习引入对象检测,这可以将低镜头对象检测命名在一起。低曝光对象检测(LSOD)旨在检测来自少数甚至零标记数据的对象,其分别可以分为几次对象检测(FSOD)和零拍摄对象检测(ZSD)。本文对基于深度学习的FSOD和ZSD进行了全面的调查。首先,本调查将FSOD和ZSD的方法分类为不同的类别,并讨论了它们的利弊。其次,本调查审查了数据集设置和FSOD和ZSD的评估指标,然后分析了在这些基准上的不同方法的性能。最后,本调查讨论了FSOD和ZSD的未来挑战和有希望的方向。
translated by 谷歌翻译