组成概括是指模型可以根据训练期间观察到的数据组件概括为新组成的输入数据的能力。它触发了对不同任务的一系列组成概括分析,因为概括是语言和解决问题技能的重要方面。但是,关于数学单词问题(MWP)的类似讨论受到限制。在此手稿中,我们研究了MWP求解中的组成概括。具体来说,我们首先引入了一种数据分割方法,以创建现有MWP数据集的组合分解。同时,我们合成数据以隔离组成的效果。为了改善MWP解决方案中的组成概括,我们提出了一种迭代数据增强方法,该方法将各种组成变化包括在培训数据中,并可以与MWP方法合作。在评估过程中,我们检查了一组方法,发现所有方法都会在评估的数据集中遇到严重的性能损失。我们还发现我们的数据增强方法可以显着改善一般MWP方法的组成概括。代码可在https://github.com/demoleiwang/cgmwp上找到。
translated by 谷歌翻译
自动解决数学字问题是自然语言处理领域的关键任务。最近的模型已达到其性能瓶颈,需要更高质量的培训数据。我们提出了一种新的数据增强方法,扭转了数学词问题的数学逻辑,以产生新的高质量数学问题,并介绍了能够在数学推理逻辑中受益的新知识点。我们在两个Sota Math Word问题解决模型上应用增强数据,并将我们的结果与强大的数据增强基线进行比较。实验结果表明了我们方法的有效性。我们在https://github.com/yiyunya/roda发布我们的代码和数据。
translated by 谷歌翻译
解决数学单词问题需要对文本中的数量进行演绎推理。各种最近的研究工作主要依赖于序列到序列或序列模型,以生成数学表达式,而无需在给定情况下明确执行数量之间的关系推理。尽管经验上有效,但这种方法通常并未为生成的表达提供解释。在这项工作中,我们将任务视为一个复杂的关系提取问题,提出了一种新的方法,该方法提出了可解释的演绎推理步骤,以迭代构建目标表达式,其中每个步骤涉及两个定义其关系的数量的原始操作。通过在四个基准数据集上进行的大量实验,我们表明该提出的模型显着优于现有的强基础。我们进一步证明,演绎过程不仅提出了更可解释的步骤,而且还使我们能够对需要更复杂推理的问题进行更准确的预测。
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译
本文介绍了Okapi,用于自然语言的新数据集到可执行的Web应用程序编程接口(NL2API)。此数据集是英文,包含22,508个问题和9,019个独特的API呼叫,涵盖三个域。我们为NL2API定义了新的组成泛化任务,该任务探讨了在推理阶段中的培训中从简单API调用外推开的模型能力。此外,该模型必须生成正确执行的API调用,而不是与现有方法进行正确执行,该方法评估具有占位符值的查询。我们的数据集与大多数现有的组合语义解析数据集不同,因为它是一个非合成数据集,研究了低资源设置中的组成概括。 Okapi是创建现实数据集和基准的一步,用于研究与现有数据集和任务一起学习组成泛化。我们报告了在各种扫描和okapi数据集任务上培训的序列到序列基线模型的泛化能力。当从简单API调用概括到更复杂的API调用时,最佳模型可实现15 \%精确匹配的准确性。这突出了未来研究的一些挑战。 okapi数据集和任务在https://aka.ms/nl2api/data上公开使用。
translated by 谷歌翻译
Compositional generalization is a basic mechanism in human language learning, which current neural networks struggle with. A recently proposed Disentangled sequence-to-sequence model (Dangle) shows promising generalization capability by learning specialized encodings for each decoding step. We introduce two key modifications to this model which encourage more disentangled representations and improve its compute and memory efficiency, allowing us to tackle compositional generalization in a more realistic setting. Specifically, instead of adaptively re-encoding source keys and values at each time step, we disentangle their representations and only re-encode keys periodically, at some interval. Our new architecture leads to better generalization performance across existing tasks and datasets, and a new machine translation benchmark which we create by detecting naturally occurring compositional patterns in relation to a training set. We show this methodology better emulates real-world requirements than artificial challenges.
translated by 谷歌翻译
已显示通用非结构化神经网络在分布外的组成概述上挣扎。通过示例重组的组成数据增强已经转移了一些关于组成性的关于多个语义解析任务的黑盒神经模型的先前知识,但这通常需要特定于任务的工程或提供有限的收益。我们使用称为组成结构学习者(CSL)的型号提供更强大的数据重组方法。 CSL是一种具有拟同步无线语法骨干的生成模型,我们从训练数据中诱导。我们从CSL中进行重组的例子,并将其添加到预先训练的序列到序列模型(T5)的微调数据中。该程序有效地将大多数CSL的组成偏差转移到T5以进行诊断任务,并导致模型比在两个真实世界的组成泛化任务上的T5-CSL集合更强。这导致新的最先进的性能,这些挑战性的语义解析任务需要泛化自然语言变异和元素的新组成。
translated by 谷歌翻译
数据增强是解决过度合适的有效方法。许多以前的作品提出了针对NLP的不同数据增强策略,例如注入噪声,单词更换,反向翻译等。虽然有效,但它们错过了语言的一个重要特征 - 复杂性,复杂表达的含义是由其子构建的部分。在此激励的情况下,我们提出了一种称为Treemix的自然语言理解的组成数据增强方法。具体而言,Treemix利用选区解析树将句子分解为组成型子结构和混合数据增强技术以重组它们以生成新的句子。与以前的方法相比,Treemix引入了更大的多样性,并鼓励模型学习NLP数据的组成性。关于文本分类和扫描的广泛实验表明,Treemix优于当前最新数据增强方法。
translated by 谷歌翻译
了解用户的意图并从句子中识别出语义实体,即自然语言理解(NLU),是许多自然语言处理任务的上游任务。主要挑战之一是收集足够数量的注释数据来培训模型。现有有关文本增强的研究并没有充分考虑实体,因此对于NLU任务的表现不佳。为了解决这个问题,我们提出了一种新型的NLP数据增强技术,实体意识数据增强(EADA),该技术应用了树结构,实体意识到语法树(EAST),以表示句子与对实体的注意相结合。我们的EADA技术会自动从少量注释的数据中构造东方,然后生成大量的培训实例,以进行意图检测和插槽填充。四个数据集的实验结果表明,该技术在准确性和泛化能力方面显着优于现有数据增强方法。
translated by 谷歌翻译
神经MWP求解器很难处理小型本地差异。在MWP任务中,一些本地更改节省原始语义,而其他本地更改可能完全更改底层逻辑。目前,MWP任务的现有数据集包含有限的样本,这些样本是神经模型的关键,用于学会消除问题的不同类型的差异并正确解决问题。在本文中,我们提出了一套新型数据增强方法,可以通过不同类型的局部差异增强此类数据来补充现有数据集,并有助于提高当前神经模型的泛化能力。新样本由知识导向实体替换,逻辑引导问题重组产生。确保增强方法保持新数据与其标签之间的一致性。实验结果表明了我们方法的必要性和有效性。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
文本到SQL解析是一项必不可少且具有挑战性的任务。文本到SQL解析的目的是根据关系数据库提供的证据将自然语言(NL)问题转换为其相应的结构性查询语言(SQL)。来自数据库社区的早期文本到SQL解析系统取得了显着的进展,重度人类工程和用户与系统的互动的成本。近年来,深层神经网络通过神经生成模型显着提出了这项任务,该模型会自动学习从输入NL问题到输出SQL查询的映射功能。随后,大型的预训练的语言模型将文本到SQL解析任务的最新作品带到了一个新级别。在这项调查中,我们对文本到SQL解析的深度学习方法进行了全面的评论。首先,我们介绍了文本到SQL解析语料库,可以归类为单转和多转。其次,我们提供了预先训练的语言模型和现有文本解析方法的系统概述。第三,我们向读者展示了文本到SQL解析所面临的挑战,并探索了该领域的一些潜在未来方向。
translated by 谷歌翻译
The rapid advancement of AI technology has made text generation tools like GPT-3 and ChatGPT increasingly accessible, scalable, and effective. This can pose serious threat to the credibility of various forms of media if these technologies are used for plagiarism, including scientific literature and news sources. Despite the development of automated methods for paraphrase identification, detecting this type of plagiarism remains a challenge due to the disparate nature of the datasets on which these methods are trained. In this study, we review traditional and current approaches to paraphrase identification and propose a refined typology of paraphrases. We also investigate how this typology is represented in popular datasets and how under-representation of certain types of paraphrases impacts detection capabilities. Finally, we outline new directions for future research and datasets in the pursuit of more effective paraphrase detection using AI.
translated by 谷歌翻译
Solving math word problems is the task that analyses the relation of quantities and requires an accurate understanding of contextual natural language information. Recent studies show that current models rely on shallow heuristics to predict solutions and could be easily misled by small textual perturbations. To address this problem, we propose a Textual Enhanced Contrastive Learning framework, which enforces the models to distinguish semantically similar examples while holding different mathematical logic. We adopt a self-supervised manner strategy to enrich examples with subtle textual variance by textual reordering or problem re-construction. We then retrieve the hardest to differentiate samples from both equation and textual perspectives and guide the model to learn their representations. Experimental results show that our method achieves state-of-the-art on both widely used benchmark datasets and also exquisitely designed challenge datasets in English and Chinese. \footnote{Our code and data is available at \url{https://github.com/yiyunya/Textual_CL_MWP}
translated by 谷歌翻译
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models. In this work, we analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias (i.e., a source sequence already mapped to a target sequence is less likely to be mapped to other target sequences), and the tendency to memorize whole examples rather than separating structures from contents. We propose two techniques to address these two issues respectively: Mutual Exclusivity Training that prevents the model from producing seen generations when facing novel, unseen examples via an unlikelihood-based loss; and prim2primX data augmentation that automatically diversifies the arguments of every syntactic function to prevent memorizing and provide a compositional inductive bias without exposing test-set data. Combining these two techniques, we show substantial empirical improvements using standard sequence-to-sequence models (LSTMs and Transformers) on two widely-used compositionality datasets: SCAN and COGS. Finally, we provide analysis characterizing the improvements as well as the remaining challenges, and provide detailed ablations of our method. Our code is available at https://github.com/owenzx/met-primaug
translated by 谷歌翻译
随着未来以数据为中心的决策,对数据库的无缝访问至关重要。关于创建有效的文本到SQL(Text2SQL)模型以访问数据库的数据有广泛的研究。使用自然语言是可以通过有效访问数据库(尤其是对于非技术用户)来弥合数据和结果之间差距的最佳接口之一。它将打开门,并在精通技术技能或不太熟练的查询语言的用户中引起极大的兴趣。即使提出或研究了许多基于深度学习的算法,在现实工作场景中使用自然语言来解决数据查询问题仍然非常具有挑战性。原因是在不同的研究中使用不同的数据集,这带来了其局限性和假设。同时,我们确实缺乏对这些提议的模型及其对其训练的特定数据集的局限性的彻底理解。在本文中,我们试图介绍过去几年研究的24种神经网络模型的整体概述,包括其涉及卷积神经网络,经常性神经网络,指针网络,强化学习,生成模型等的架构。我们还概述11个数据集,这些数据集被广泛用于训练Text2SQL技术的模型。我们还讨论了无缝数据查询中文本2SQL技术的未来应用可能性。
translated by 谷歌翻译
神经网络模型通常概括到不匹配的域或分布不符。在NLP中,特别是当预期模型概括为合作的模型,即熟悉词汇和建筑的新组合时,尤其产生这个问题。我们调查促进从一个组成任务转移到另一个组成任务的学习的学习陈述:模型的代表和任务特定层在预先驾驶任务上具有不同的培训,使得它们概括为需要合成性的不匹配分裂。我们将此方法应用于语义解析,使用三个非常不同的数据集,COG,地理信息集和扫描,作为FineTuning和目标任务交替使用。我们的方法显着改善了在目标任务的测试组上的基线上的组成概括,在微调期间被列出。消融研究表征了所提出的算法中主要步骤的效用,并支持我们的假设。
translated by 谷歌翻译
学术研究是解决以前从未解决过的问题的探索活动。通过这种性质,每个学术研究工作都需要进行文献审查,以区分其Novelties尚未通过事先作品解决。在自然语言处理中,该文献综述通常在“相关工作”部分下进行。鉴于研究文件的其余部分和引用的论文列表,自动相关工作生成的任务旨在自动生成“相关工作”部分。虽然这项任务是在10年前提出的,但直到最近,它被认为是作为科学多文件摘要问题的变种。然而,即使在今天,尚未标准化了自动相关工作和引用文本生成的问题。在这项调查中,我们进行了一个元研究,从问题制定,数据集收集,方法方法,绩效评估和未来前景的角度来比较相关工作的现有文献,以便为读者洞察到国家的进步 - 最内容的研究,以及如何进行未来的研究。我们还调查了我们建议未来工作要考虑整合的相关研究领域。
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
Structured tabular data exist across nearly all fields. Reasoning task over these data aims to answer questions or determine the truthiness of hypothesis sentences by understanding the semantic meaning of a table. While previous works have devoted significant efforts to the tabular reasoning task, they always assume there are sufficient labeled data. However, constructing reasoning samples over tables (and related text) is labor-intensive, especially when the reasoning process is complex. When labeled data is insufficient, the performance of models will suffer an unendurable decline. In this paper, we propose a unified framework for unsupervised complex tabular reasoning (UCTR), which generates sufficient and diverse synthetic data with complex logic for tabular reasoning tasks, assuming no human-annotated data at all. We first utilize a random sampling strategy to collect diverse programs of different types and execute them on tables based on a "Program-Executor" module. To bridge the gap between the programs and natural language sentences, we design a powerful "NL-Generator" module to generate natural language sentences with complex logic from these programs. Since a table often occurs with its surrounding texts, we further propose novel "Table-to-Text" and "Text-to-Table" operators to handle joint table-text reasoning scenarios. This way, we can adequately exploit the unlabeled table resources to obtain a well-performed reasoning model under an unsupervised setting. Our experiments cover different tasks (question answering and fact verification) and different domains (general and specific), showing that our unsupervised methods can achieve at most 93% performance compared to supervised models. We also find that it can substantially boost the supervised performance in low-resourced domains as a data augmentation technique. Our code is available at https://github.com/leezythu/UCTR.
translated by 谷歌翻译