尽管深度学习的卓越性能(DL)在许多分割任务上,但基于DL的方法令人惊奇地过于对高偏振标签概率的预测。对于许多具有固有标签歧义的许多应用通常是不可取的,即使在人类注释中也是如此。通过利用每张图片的多个注释和分割不确定性来解决这一挑战。但是,多次图像的批次通常不可用,在真实的应用程序中,不确定性在分段结果对用户的情况下不提供完全控制。在本文中,我们提出了新的方法来改善分割概率估计,而不会在真实情景中牺牲性能,我们只有每张图片只有一个暧昧的注释。我们将估计的网络分割概率图边缘化,这是鼓励/过度的网络上/过度段,而没有惩罚平衡分割。此外,我们提出了一个统一的HyperNetwork合奏方法,以减轻培训多个网络的计算负担。我们的方法成功地估计了反映了底层结构的分割概率图,并为具有挑战性的3D医学图像分割进行了直观控制。虽然我们所提出的方法的主要重点不是提高二元分割性能,但我们的方法略微超越了最先进的。该代码可用于\ url {https://github.com/sh4174/hypernetensemble}。
translated by 谷歌翻译
医学成像的病变分割是临床研究中的一个重要课题。研究人员提出了各种检测和分段算法来解决这项任务。最近,基于深度学习的方法显着提高了传统方法的性能。然而,大多数最先进的深度学习方法需要手动设计多个网络组件和培训策略。在本文中,我们提出了一种新的自动化机器学习算法T-Automl,不仅搜索最佳神经结构,而且还可以同时找到超参数和数据增强策略的最佳组合。该方法采用现代变压器模型,引入了适应搜索空间嵌入的动态长度,并且可以显着提高搜索能力。我们在几个大型公共病变分割数据集上验证T-Automl并实现最先进的性能。
translated by 谷歌翻译
深度学习技术在检测医学图像中的对象方面取得了成功,但仍然遭受虚假阳性预测,可能会阻碍准确的诊断。神经网络输出的估计不确定性已用于标记不正确的预测。我们研究了来自神经网络不确定性估计的功能和基于形状的特征,这些特征是根据二进制预测计算出的,从二进制预测中,通过开发基于分类的后处理步骤来减少肝病病变检测中的假阳性,以用于不同的不确定性估计方法。我们证明了两个数据集上所有不确定性估计方法的神经网络的病变检测性能(相对于F1分数)的改善,分别包括腹部MR和CT图像。我们表明,根据神经网络不确定性估计计算的功能往往不会有助于降低假阳性。我们的结果表明,诸如阶级不平衡(真实假阳性比率)和从不确定性图提取的基于形状的特征之类的因素在区分假阳性和真实阳性预测方面起着重要作用
translated by 谷歌翻译
我们实施了两个不同的三维深度学习神经网络,并评估了它们在非对比度计算机断层扫描(CT)上看到的颅内出血(ICH)的能力。一种模型,称为“沿正交关注u-net沿正交级别的素隔离”(Viola-Unet),其体系结构元素可适应2022年实例的数据挑战。第二个比较模型是从No-New U-NET(NNU-NET)得出的。输入图像和地面真理分割图用于以监督方式分别训练两个网络。验证数据随后用于半监督培训。在5倍交叉验证期间比较了模型预测。中提琴 - UNET的表现优于四个性能指标中的两个(即NSD和RVD)的比较网络。将中提琴和NNU-NET网络组合的合奏模型在DSC和HD方面的性能最高。我们证明,与3D U-NET相关的ICH分割性能优势有效地合并了U-NET的解码分支期间的空间正交特征。 Viola-Unet AI工具的代码基础,预估计的权重和Docker图像将在https://github.com/samleoqh/viola-unet上公开获得。
translated by 谷歌翻译
难以通过二进制面具手动准确标记含糊不清的和复杂形状的目标。在医学图像分割中突出显示二元掩模下面的弱点,其中模糊是普遍的。在多个注释的情况下,通过二元面具对临床医生达成共识更具挑战性。此外,这些不确定的区域与病变结构有关,可能含有有利于诊断的解剖信息。然而,目前关于不确定性的研究主要关注模型培训和数据标签的不确定性。他们都没有调查病变本身的模糊性质的影响。通过图像消光,透过图像消光,将Alpha Matte作为软片介绍,代表医学场景中不确定的区域,并因此提出了一种新的不确定性量化方法来填补填补差距病变结构的不确定性研究。在这项工作中,我们在多任务框架中引入了一种新的架构,以在多任务框架中生成二进制掩模和alpha掩饰,这优于所有最先进的消光算法。建议的不确定性地图能够突出模糊地区和我们提出的新型多任务损失加权策略可以进一步提高性能并证明其具体的益处。为了充分评估我们提出的方法的有效性,我们首先用alpha哑布标记了三个医疗数据集,以解决医学场景中可用消光数据集的短缺,并证明alpha遮罩是一种比定性的二进制掩模更有效的标签方法和量化方面。
translated by 谷歌翻译
Medical image segmentation is an actively studied task in medical imaging, where the precision of the annotations is of utter importance towards accurate diagnosis and treatment. In recent years, the task has been approached with various deep learning systems, among the most popular models being U-Net. In this work, we propose a novel strategy to generate ensembles of different architectures for medical image segmentation, by leveraging the diversity (decorrelation) of the models forming the ensemble. More specifically, we utilize the Dice score among model pairs to estimate the correlation between the outputs of the two models forming each pair. To promote diversity, we select models with low Dice scores among each other. We carry out gastro-intestinal tract image segmentation experiments to compare our diversity-promoting ensemble (DiPE) with another strategy to create ensembles based on selecting the top scoring U-Net models. Our empirical results show that DiPE surpasses both individual models as well as the ensemble creation strategy based on selecting the top scoring models.
translated by 谷歌翻译
The clinical interest is often to measure the volume of a structure, which is typically derived from a segmentation. In order to evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using popular discrete metrics, such as the Dice score. Recent segmentation methods use a differentiable surrogate metric, such as soft Dice, as part of the loss function during the learning phase. In this work, we first briefly describe how to derive volume estimates from a segmentation that is, potentially, inherently uncertain or ambiguous. This is followed by a theoretical analysis and an experimental validation linking the inherent uncertainty to common loss functions for training CNNs, namely cross-entropy and soft Dice. We find that, even though soft Dice optimization leads to an improved performance with respect to the Dice score and other measures, it may introduce a volume bias for tasks with high inherent uncertainty. These findings indicate some of the method's clinical limitations and suggest doing a closer ad-hoc volume analysis with an optional re-calibration step.
translated by 谷歌翻译
In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-na\"ive segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-na\"ive segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-na\"ive segmentation networks (AUC up to 0.874).
translated by 谷歌翻译
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
translated by 谷歌翻译
我们研究不同损失功能对医学图像病变细分的影响。尽管在处理自然图像时,跨凝结(CE)损失是最受欢迎的选择,但对于生物医学图像分割,由于其处理不平衡的情况,软骰子损失通常是首选的。另一方面,这两个功能的组合也已成功地应用于此类任务中。一个较少研究的问题是在存在分布(OOD)数据的情况下所有这些损失的概括能力。这是指在测试时间出现的样本,这些样本是从与训练图像不同的分布中得出的。在我们的情况下,我们将模型训练在始终包含病变的图像上,但是在测试时间我们也有无病变样品。我们通过全面的实验对内窥镜图像和糖尿病脚图像的溃疡分割进行了全面的实验,分析了不同损失函数对分布性能的最小化对分布性能的影响。我们的发现令人惊讶:在处理OOD数据时,CE-DICE损失组合在分割分配图像中表现出色,这使我们建议通过这种问题采用CE损失,因为它的稳健性和能够概括为OOD样品。可以在\ url {https://github.com/agaldran/lesion_losses_ood}找到与我们实验相关的代码。
translated by 谷歌翻译
医学图像分割模型的性能指标用于衡量参考注释和预测之间的一致性。在开发此类模型中,使用了一组通用指标,以使结果更具可比性。但是,公共数据集中的分布与临床实践中遇到的案例之间存在不匹配。许多常见的指标无法衡量这种不匹配的影响,尤其是对于包含不确定,小或空参考注释的临床数据集。因此,可能无法通过此类指标来验证模型在临床上有意义的一致性。评估临床价值的维度包括独立于参考注释量的大小,考虑参考注释的不确定性,体积计和/或位置一致性的奖励以及对空参考注释正确分类的奖励。与普通的公共数据集不同,我们的内部数据集更具代表性。它包含不确定的,小或空的参考注释。我们研究了有关深度学习框架的预测的公开度量指标,以确定哪些设置共同指标可提供有意义的结果。我们将公共基准数据集进行比较而没有不确定,小或空参考注释。该代码将发布。
translated by 谷歌翻译
大脑磁共振成像(MRI)扫描的自动分割和体积对于诊断帕金森氏病(PD)和帕金森氏症综合症(P-Plus)至关重要。为了提高诊断性能,我们在大脑分割中采用了深度学习(DL)模型,并将其性能与金标准的非DL方法进行了比较。我们收集了健康对照组(n = 105)和PD患者(n = 105),多个全身性萎缩(n = 132)和渐进性超核麻痹(n = 69)的大脑MRI扫描。 2020.使用金标准的非DL模型FreeSurfer(FS),我们对六个脑结构进行了分割:中脑,PON,CAUDATE,CAUDATE,PUTATATE,pALLIDUM和THIRD CNTRICLE,并将其视为DL模型的注释数据,代表性V -net和unet。计算了分化正常,PD和P-Plus病例的曲线下的骰子分数和面积。每位患者六个大脑结构的V-NET和UNETR的分割时间分别为3.48 +-0.17和48.14 +-0.97 s,比FS(15,735 +-1.07 s)快至少300倍。两种DL模型的骰子得分都足够高(> 0.85),它们的疾病分类AUC优于FS。为了分类正常与P-Plus和PD与多个全身性萎缩(小脑型)的分类,DL模型和FS显示出高于0.8的AUC。 DL显着减少了分析时间,而不会损害大脑分割和差异诊断的性能。我们的发现可能有助于在临床环境中采用DL脑MRI分割并提高大脑研究。
translated by 谷歌翻译
深度学习算法的最新进展为解决许多医学图像分析问题带来了重大好处。培训深度学习模型通常需要具有专家标记注释的大型数据集。但是,获取专家标记的注释不仅昂贵,而且主观,容易出错,并且观察者内部变异性会引入标签。由于解剖学的模棱两可,使用深度学习模型来细分医学图像时,这尤其是一个问题。基于图像的医学诊断工具使用经过不正确分段标签训练的深度学习模型可以导致错误的诊断和治疗建议。与单评论注释相比,多评价者注释可能更适合于使用小型培训集的深度学习模型进行训练。本文的目的是开发和评估一种基于MRI中病变特征的多评价者注释和解剖学知识来生成概率标签的方法,以及一种使用概率的标签使用归一化活动性损失作为A的病变特征的解剖学知识,以训练分割模型”。耐噪声损失的功能。通过将17个膝盖MRI扫描的二进制基础真理进行比较,以评估该模型,以用于临床分割和检测骨髓病变(BML)。该方法与二进制跨透镜损失函数相比,该方法成功提高了精度14,召回22和骰子得分8%。总体而言,这项工作的结果表明,使用软标签的拟议归一化主动损失成功地减轻了嘈杂标签的影响。
translated by 谷歌翻译
简介白质超强度(WMHS)的自动分割是磁共振成像(MRI)神经影像分析的重要步骤。流体减弱的反转恢复(FLAIR加权)是MRI对比度,对于可视化和量化WMHS,这是脑小血管疾病和阿尔茨海默氏病(AD)特别有用的。临床MRI方案迁移到三维(3D)FLAIR加权的采集,以在所有三个体素维度中实现高空间分辨率。当前的研究详细介绍了深度学习工具的部署,以使自动化的WMH分割和表征从获得的3D Flair加权图像作为国家广告成像计划的一部分获得。 DDI研究中的642名参与者(283名男性,平均年龄:(65.18 +/- 9.33)年)中的材料和方法,在五个国家收集地点进行了培训和验证两个内部网络。在642名参与者的内部数据和一个外部数据集中,对三个模型进行了测试,其中包含来自国际合作者的29个情况。这些测试集进行了独立评估。使用了五个已建立的WMH性能指标与地面真理人体分割进行比较。测试的三个网络的结果,3D NNU-NET具有最佳性能,平均骰子相似性系数得分为0.78 +/- 0.10,其性能优于内部开发的2.5D模型和SOTA DEEP DEEP BAYESIAN网络。结论MRI协议中3D Flair加权图像的使用越来越多,我们的结果表明,WMH分割模型可以在3D数据上进行训练,并产生与无需更高的或更好的无需先进的WMH分割性能用于包括T1加权图像系列。
translated by 谷歌翻译
手动注释医学图像是高度主观的,导致不可避免和巨大的注释偏见。深度学习模型可能超过各种任务的人类性能,但它们也可能模仿或放大这些偏差。虽然我们可以有多个注释器并融化它们的注释来减少随机错误,但我们无法使用这种策略来处理因注释器偏好引起的偏差。在本文中,我们突出了对医学图像分割任务的注释相关偏差问题,并提出了涉及涉及的注释分配学习(PADL)框架来解决它从解开注入者的偏好使用分配学习的随机误差的偏好来解决它由于不仅产生元分割,而且产生每个注释器的分割。在此框架下,随机误差建模(SEM)模块估计元分割图和平均随机错误映射,以及一系列人类偏好建模(HPM)模块估计每个注释器的分段和相应的随机误差。我们在具有不同的成像方式的两个医学图像基准上进行了评估了我们的PADL框架,这些模型由多个医疗专业人员注释,并在所有五种医学图像分割任务上取得了有希望的表现。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
Solving variational image segmentation problems with hidden physics is often expensive and requires different algorithms and manually tunes model parameter. The deep learning methods based on the U-Net structure have obtained outstanding performances in many different medical image segmentation tasks, but designing such networks requires a lot of parameters and training data, not always available for practical problems. In this paper, inspired by traditional multi-phase convexity Mumford-Shah variational model and full approximation scheme (FAS) solving the nonlinear systems, we propose a novel variational-model-informed network (denoted as FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features. The proposed model-informed network integrates image data and mathematical models, and implements them through learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear systems, where a skip-connection is employed to fuse the multi-scale features. Secondly, we further design a convolution block to fuse the extracted features from the previous stage, resulting in the final segmentation possibility. Experimental results on three different medical image segmentation tasks show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations. Moreover, it may also be possible to train specialized network architectures that automatically satisfy some of the mathematical and physical laws in other image problems for better accuracy, faster training and improved generalization.The code is available at \url{https://github.com/zhuhui100/FASUNet}.
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译