在低动态范围(LDR)图像中存在阴影和突出显示区域,其从高动态范围(HDR)场景捕获。恢复LDR图像的饱和区域是一个不成不良的问题。在本文中,通过融合模型和数据驱动的方法来恢复LDR图像的饱和区域。利用这种神经增强,首先通过基于模型的方法从底层LDR图像生成两个合成的LDR图像。一个比输入图像更亮,以恢复阴影区域,另一个比输入图像更暗,以恢复高光区域。然后通过新颖的曝光感知饱和度恢复网络(EASRN)改进了两个合成图像。最后,两个合成图像和输入图像通过HDR合成算法或多尺度曝光融合算法组合在一起。所提出的算法可以嵌入任何智能手机或数码相机,以产生信息丰富的LDR图像。
translated by 谷歌翻译
基于模型的单图像去悬算算法恢复了带有尖锐边缘的无雾图像和真实世界的朦胧图像的丰富细节,但以低psnr和ssim值的牺牲来为合成朦胧的图像。数据驱动的图像恢复具有高PSNR和SSIM值的无雾图图像,用于合成朦胧的图像,但对比度低,甚至对于现实世界中的朦胧图像而言,甚至剩下的雾霾。在本文中,通过组合基于模型和数据驱动的方法来引入一种新型的单图像飞行算法。传输图和大气光都是首先通过基于模型的方法估算的,然后通过基于双尺度生成对抗网络(GAN)的方法进行完善。所得算法形成一种神经增强,在相应的数据驱动方法可能不会收敛的同时,该算法的收敛非常快。通过使用估计的传输图和大气光以及KoschmiederLaw来恢复无雾图像。实验结果表明,所提出的算法可以从现实世界和合成的朦胧图像中井除雾霾。
translated by 谷歌翻译
空间变化暴露(SVE)是高动态(HDR)成像(HDRI)的有希望的选择。被称为单射HDRI的SVE的HDRI是一种有效的解决方案,以避免重影文物。然而,恢复从真实世界的图像与SVE恢复全分辨率的HDR图像是非常具有挑战性的,因为:a)在拜耳图案中,通过相机捕获具有不同曝光的三分之一的像素,B)捕获的一些捕获像素过于和暴露。对于以前的挑战,设计了一种空间变化的卷积(SVC)来设计以改变曝光的携带携带的拜耳图像。对于后者,提出了一种曝光 - 引导方法,以防止来自暴露和暴露的像素的干扰。最后,联合去脱模和HDRI深度学习框架被形式化以包括两种新型组件,并实现端到端的单次HDRI。实验表明,所提出的端到端框架避免了累积误差问题并超越了相关的最先进的方法。
translated by 谷歌翻译
从单个下雨的图像中取出雨ste的人是一项挑战,因为雨牛排在多雨的图像上在空间上有所不同。本文通过结合常规图像处理技术和深度学习技术来研究此问题。提出了改进的加权引导图像过滤器(IWGIF),以从多雨图像中提取高频信息。高频信息主要包括雨牛排和噪音,它可以指导雨牛排意识到深度卷积神经网络(RSADCNN),以更多地注意雨牛排。RSADNN的效率和解释能力得到了提高。实验表明,就定性和定量测量而言,所提出的算法在合成和现实世界图像上都显着优于合成和现实世界图像的最先进方法。它对于在雨季中的自主导航很有用。
translated by 谷歌翻译
基于模型的单幅图像脱水算法用尖锐的边缘和丰富的细节恢复图像,以牺牲低PSNR值。数据驱动的那些恢复具有高PSNR值的图像,但具有低对比度,甚至一些剩余的阴霾。在本文中,通过融合基于模型和数据驱动的方法来引入新颖的单图像脱水算法。通过基于模型的方法初始化透射图和大气光,并通过构成神经增强的深度学习方法来精制。通过使用传输地图和大气光来恢复无雾图像。实验结果表明,该算法可以从现实世界和合成朦胧图像中脱离雾度。
translated by 谷歌翻译
由于其广泛的应用,模型驱动的单幅图像脱色在不同的前方之上被广泛研究。天空区域的物体光线和雾度与噪声放大之间的模糊性是模型驱动的单图像脱水的两个固有问题。在本文中,提出了先前(DDAP)的黑暗直接衰减,以解决前一个问题。提出了一种新的阴霾线平均来减少由DDAP引起的形态学伪像,其使加权引导图像过滤器能够进一步减少形态伪像,同时保留图像中的细结构。然后提出了一种通过采用拉普拉斯和瓜山金字塔将朦胧图像分解成不同水平并应用不同的雾度去除和降噪方法来解决后一种问题,以解决金字塔的不同级别的场景辐射。将得到的金字塔折叠以恢复无雾图像。实验结果表明,所提出的算法优于艺术脱水算法的状态,并且确实防止了噪声在天空区域中被放大。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
由于可能的颜色失真和输入图像的最亮和最黑暗的区域中可能的颜色失真和丢失丢失,缝合不同曝光的多个图像充满挑战。本文首先通过引入加权直方图平均(WHA)的新概念来提出一种新型颜色映射算法。所提出的WHA算法利用通过使用颜色映射函数(CMFS)的非降低性能而建立的两个图像的直方图间距之间的对应关系。然后采用WHA算法来合成一组不同暴露的全景图像。中间全景图像最终通过最先进的多尺度曝光融合(MEF)算法融合以产生最终的全景图像。广泛的实验表明,所提出的WHA算法显着超越了相关最新的彩色映射方法。基于MEF的提出的高动态范围(HDR)拼接算法也在输入图像的最亮和最黑暗的区域中保留细节。相关材料将在https://github.com/yilun-xu/wha公开访问可重复的研究。
translated by 谷歌翻译
我们提出了一种运动分割引导的卷积神经网络(CNN)方法,以进行高动态范围(HDR)图像磁化。首先,我们使用CNN分段输入序列中的移动区域。然后,我们将静态区域和移动区域分别与不同的融合网络合并,并结合融合功能以生成最终的无幽灵HDR图像。我们的运动分割引导的HDR融合方法比现有的HDR脱胶方法具有显着优势。首先,通过将输入序列分割为静态和移动区域,我们提出的方法可以为各种具有挑战性的饱和度和运动类型学习有效的融合规则。其次,我们引入了一个新颖的存储网络,该网络积累了在饱和区域中生成合理细节所需的必要功能。所提出的方法在两个公开可用的数据集上优于九种现有的最新方法,并生成视觉上令人愉悦的无幽灵HDR结果。我们还提供了3683个不同暴露图像的大规模运动细分数据集,以使研究社区受益。
translated by 谷歌翻译
在弱光环境下,手持式摄影在长时间的曝光设置下遭受了严重的相机震动。尽管现有的Deblurry算法在暴露良好的模糊图像上表现出了令人鼓舞的性能,但它们仍然无法应对低光快照。在实用的低光脱毛中,复杂的噪声和饱和区是两个主导挑战。在这项工作中,我们提出了一种称为图像的新型非盲脱毛方法,并具有特征空间Wiener Deonervolution网络(Infwide),以系统地解决这些问题。在算法设计方面,Infwide提出了一个两分支的架构,该体系结构明确消除了噪声并幻觉,使图像空间中的饱和区域抑制了特征空间中的响起文物,并将两个互补输出与一个微妙的多尺度融合网络集成在一起高质量的夜间照片浮雕。为了进行有效的网络培训,我们设计了一组损失功能,集成了前向成像模型和向后重建,以形成近环的正则化,以确保深神经网络的良好收敛性。此外,为了优化Infwide在实际弱光条件下的适用性,采用基于物理过程的低光噪声模型来合成现实的嘈杂夜间照片进行模型训练。利用传统的Wiener Deonervolution算法的身体驱动的特征并引起了深层神经网络的表示能力,Infwide可以恢复细节,同时抑制在脱毛期间的不愉快的人工制品。关于合成数据和实际数据的广泛实验证明了所提出的方法的出色性能。
translated by 谷歌翻译
我们提出了一种新型的基于网络的基于网络的HDR Duthosting方法,用于融合任意长度的动态序列。所提出的方法使用卷积和经常性架构来产生视觉上令人愉悦的重影的HDR图像。我们介绍了一个新的反复间谍架构,即自动门控内存(SGM)单元格,这胜过标准LSTM单元格,同时包含更少的参数并具有更快的运行时间。在SGM小区中,通过将门的输出乘以自身的函数来控制通过门的信息流。此外,我们在双向设置中使用两个SGM单元来提高输出质量。该方法的方法与现有的HDR Deghosting方法定量跨三个公共数据集相比,实现了最先进的性能,同时同时实现熔断器可变长度输入顺序的可扩展性而不需要重新训练。通过广泛的消融,我们证明了各个组件以拟议方法的重要性。该代码可在https://val.cds.iisc.ac.in.in/hdr/hdrrn/index.html中获得。
translated by 谷歌翻译
相位检索(PR)是从其仅限强度测量中恢复复杂值信号的长期挑战,由于其在数字成像中的广泛应用,引起了很大的关注。最近,开发了基于深度学习的方法,这些方法在单发PR中取得了成功。这些方法需要单个傅立叶强度测量,而无需对测量数据施加任何其他约束。然而,由于PR问题的输入和输出域之间存在很大的差异,香草深神经网络(DNN)并没有提供良好的性能。物理信息的方法试图将傅立叶强度测量结果纳入提高重建精度的迭代方法。但是,它需要一个冗长的计算过程,并且仍然无法保证准确性。此外,其中许多方法都在模拟数据上工作,这些数据忽略了一些常见问题,例如实用光学PR系统中的饱和度和量化错误。在本文中,提出了一种新型的物理驱动的多尺度DNN结构,称为PPRNET。与其他基于深度学习的PR方法类似,PPRNET仅需要一个傅立叶强度测量。物理驱动的是,网络被指导遵循不同尺度的傅立叶强度测量,以提高重建精度。 PPRNET具有前馈结构,可以端到端训练。因此,它比传统物理驱动的PR方法更快,更准确。进行了实用光学平台上的大量模拟和实验。结果证明了拟议的PPRNET比传统的基于基于学习的PR方法的优势和实用性。
translated by 谷歌翻译
在光子 - 稀缺情况下的成像引入了许多应用的挑战,因为捕获的图像具有低信噪比和较差的亮度。在本文中,我们通过模拟量子图像传感器(QIS)的成像来研究低光子计数条件下的原始图像恢复。我们开发了一个轻量级框架,由多级金字塔去噪网络(MPDNET)和亮度调整(LA)模块组成,以实现单独的去噪和亮度增强。我们框架的主要组成部分是多跳过的剩余块(MARB),其集成了多尺度特征融合和注意机制,以实现更好的特征表示。我们的MPDNET采用拉普拉斯金字塔的想法,以了解不同级别的小规模噪声图和大规模的高频细节,在多尺度输入图像上进行特征提取,以编码更丰富的上下文信息。我们的LA模块通过估计其照明来增强去噪图像的亮度,这可以更好地避免颜色变形。广泛的实验结果表明,通过抑制噪声并有效地恢复亮度和颜色,我们的图像恢复器可以在具有各种光子水平的具有各种光子水平的降解图像上实现优异的性能。
translated by 谷歌翻译
针对现有的单一图像雾度去除算法,其基于现有知识和假设,受到实际应用中的许多限制,并且可能遭受噪声和光晕放大。本文提出了端到端系统,以通过结合先前的知识和深度学习方法来减少缺陷。雾度图像首先通过加权引导图像滤波器(WGIF)分解到基础层和细节层中,并且从基层估计偶极。然后,基础层图像被传递到高效的深卷积网络,用于估计传输映射。为了在不放大天空或严重朦胧场景中完全放大噪声的情况下恢复接近相机的物体,基于传输映射的值提出自适应策略。如果像素的传输映射很小,则最终使用雾度图像的基层通过大气散射模型恢复无雾图像。否则,使用雾霾图像。实验表明,该方法对现有方法实现了卓越的性能。
translated by 谷歌翻译
移动设备上的低光成像通常是由于不足的孔径穿过相对较小的孔径而挑战,导致信噪比较低。以前的大多数关于低光图像处理的作品仅关注单个任务,例如照明调整,颜色增强或删除噪声;或在密切依赖于从特定的摄像机模型中收集的长时间曝光图像对的关节照明调整和降解任务上,因此,这些方法在需要摄像机特定的关节增强和恢复的现实环境中不太实用且可推广。为了解决这个问题,在本文中,我们提出了一个低光图像处理框架,该框架可以执行关节照明调整,增强色彩和降解性。考虑到模型特异性数据收集的难度和捕获图像的超高定义,我们设计了两个分支:系数估计分支以及关节增强和denoising分支。系数估计分支在低分辨率空间中起作用,并预测通过双边学习增强的系数,而关节增强和去核分支在全分辨率空间中工作,并逐步执行关节增强和脱氧。与现有方法相反,我们的框架在适应另一个摄像机模型时不需要回忆大量数据,这大大减少了微调我们用于实际使用方法所需的努力。通过广泛的实验,与当前的最新方法相比,我们在现实世界中的低光成像应用中证明了它的巨大潜力。
translated by 谷歌翻译
从一组多曝光图像中重建无精神的高动态范围(HDR)图像是一项具有挑战性的任务,尤其是在大型对象运动和闭塞的情况下,使用现有方法导致可见的伪影。为了解决这个问题,我们提出了一个深层网络,该网络试图学习以正规损失为指导的多尺度特征流。它首先提取多尺度功能,然后对非参考图像的特征对齐。对齐后,我们使用残留的通道注意块将不同图像的特征合并。广泛的定性和定量比较表明,我们的方法可实现最新的性能,并在颜色伪像和几何变形大大减少的情况下产生出色的结果。
translated by 谷歌翻译
在弱光条件下获得的图像将严重影响图像的质量。解决较差的弱光图像质量的问题可以有效地提高图像的视觉质量,并更好地改善计算机视觉的可用性。此外,它在许多领域都具有非常重要的应用。本文提出了基于视网膜的Deanet,以增强弱光图像。它将图像的频率信息和内容信息结合到三个子网络中:分解网络,增强网络和调整网络。这三个子网络分别用于分解,变形,对比度增强和细节保存,调整和图像产生。我们的模型对于所有低光图像都具有良好的良好结果。该模型对公共数据集进行了培训,实验结果表明,就视力和质量而言,我们的方法比现有的最新方法更好。
translated by 谷歌翻译
在极低光线条件下捕获图像会对标准相机管道带来重大挑战。图像变得太黑了,太吵了,这使得传统的增强技术几乎不可能申请。最近,基于学习的方法已经为此任务显示了非常有希望的结果,因为它们具有更大的表现力能力来允许提高质量。这些研究中的激励,在本文中,我们的目标是利用爆破摄影来提高性能,并从极端暗的原始图像获得更加锐利和更准确的RGB图像。我们提出的框架的骨干是一种新颖的粗良好网络架构,逐步产生高质量的输出。粗略网络预测了低分辨率,去噪的原始图像,然后将其馈送到精细网络以恢复微尺的细节和逼真的纹理。为了进一步降低噪声水平并提高颜色精度,我们将该网络扩展到置换不变结构,使得它作为输入突发为低光图像,并在特征级别地合并来自多个图像的信息。我们的实验表明,我们的方法通过生产更详细和相当更高的质量的图像来引起比最先进的方法更令人愉悦的结果。
translated by 谷歌翻译
在不完美亮度条件下采取的照片的视觉质量可以通过多种因素来退化,例如,低亮度,成像噪声,颜色失真等。目前的低灯图像增强型号仅关注较低亮度的改善,或者简单地处理整体的所有退化因子,导致次优性能。在本文中,我们建议将增强模型分成两个顺序阶段。第一阶段侧重于基于像素明智的非线性映射来提高场景可见性。第二阶段专注于通过抑制其余变性因素来改善外观保真度。解耦模型有助于两个方面的增强。一方面,整个低光增强可以分为两个更容易的子组织。第一个只旨在增强可见性。它还有助于弥合低光和常光图像之间的大强度间隙。以这种方式,第二个子摊可以成形为局部外观调整。另一方面,由于从第一阶段学习的参数矩阵意识到亮度分布和场景结构,因此可以作为互补信息结合到第二阶段。在实验中,与其他低光图像增强模型相比,我们的模型在定性和定量比较方面表现出最先进的性能。此外,消融研究还验证了我们模型在多个方面的有效性,例如模型结构和损失功能。训练有素的模型可在https://github.com/hanxuhfut/decoupled-low-light-image-enhancement获得。
translated by 谷歌翻译
基于深度学习的低光图像增强方法通常需要巨大的配对训练数据,这对于在现实世界的场景中捕获是不切实际的。最近,已经探索了无监督的方法来消除对成对训练数据的依赖。然而,由于没有前衣,它们在不同的现实情景中表现得不稳定。为了解决这个问题,我们提出了一种基于先前(HEP)的有效预期直方图均衡的无监督的低光图像增强方法。我们的作品受到了有趣的观察,即直方图均衡增强图像的特征图和地面真理是相似的。具体而言,我们制定了HEP,提供了丰富的纹理和亮度信息。嵌入一​​个亮度模块(LUM),它有助于将低光图像分解为照明和反射率图,并且反射率图可以被视为恢复的图像。然而,基于Retinex理论的推导揭示了反射率图被噪声污染。我们介绍了一个噪声解剖学模块(NDM),以解除反射率图中的噪声和内容,具有不配对清洁图像的可靠帮助。通过直方图均衡的先前和噪声解剖,我们的方法可以恢复更精细的细节,更有能力抑制现实世界低光场景中的噪声。广泛的实验表明,我们的方法对最先进的无监督的低光增强算法有利地表现出甚至与最先进的监督算法匹配。
translated by 谷歌翻译