转移学习已成为减轻医疗分类任务中缺乏标记数据的标准做法。虽然FineEning使用受监督的想象佩尔预押的下游任务预磨损的功能是简单的,并且在许多作品中进行了广泛的调查,但对自我监督预测的有用性很少有研究。在本文中,我们评估了通过从三种自我监督技术(SIMCLR,SWAV和DINO)对所选医疗分类任务的三种自我监控技术(SIMCLRR,SWAV和DINO)初始化的模型的性能来评估想象成自我监督的可转换性。所选择的任务涵盖Sentinel腋窝淋巴结图像中的肿瘤检测,眼底图像中的糖尿病视网膜病变分类以及胸部X射线图像中的多种病理条件分类。我们展示了自我监督的佩戴模型产生比其监督对应物更丰富的嵌入式,这鉴于线性评估和FineTuning均有益处下游任务。例如,考虑到在织物上的数据的线性评估,我们在糖尿病视网膜病变分类任务中看到高达14.79%的提高,肿瘤分类任务中的5.4%,肺炎中的7.03%AUC检测和9.4%的AUC在胸部X射线的病理条件下检测。此外,我们将动态视觉元嵌入(DVME)引入端到端的转移学习方法,融合来自多种型号的佩尔净化的嵌入物。我们表明,与使用单个掠过的模型方法相比,DVME获得的集体表示导致所选任务的性能的显着改进,并且可以推广到预磨料模型的任何组合。
translated by 谷歌翻译
在深度学习方法进行自动医学图像分析的最新成功之前,从业者使用手工制作的放射线特征来定量描述当地的医学图像斑块。但是,提取区分性放射素特征取决于准确的病理定位,这在现实世界中很难获得。尽管疾病分类和胸部X射线的定位方面取得了进步,但许多方法未能纳入临床知名的领域知识。由于这些原因,我们提出了一个放射素引导的变压器(RGT),该变压器(RGT)与\ textit {global}图像信息与\ textit {local}知识引导的放射线信息信息提供准确的心肺病理学定位和分类\ textit {无需任何界限盒{ }。 RGT由图像变压器分支,放射线变压器分支以及聚集图像和放射线信息的融合层组成。 RGT使用对图像分支的自我注意事项,提取了一个边界框来计算放射线特征,该特征由放射线分支进一步处理。然后通过交叉注意层融合学习的图像和放射线特征。因此,RGT利用了一种新型的端到端反馈回路,该回路只能使用图像水平疾病标签引导精确的病理定位。 NIH CHESTXRAR数据集的实验表明,RGT的表现优于弱监督疾病定位的先前作品(在各个相交联合阈值的平均余量为3.6 \%)和分类(在接收器操作方下平均1.1 \%\%\%\%曲线)。接受代码和训练有素的模型将在接受后发布。
translated by 谷歌翻译
为医学图像评估构建准确和强大的人工智能系统,不仅需要高级深度学习模型的研究和设计,还需要创建大型和策划的注释训练示例。然而,构造这种数据集通常非常昂贵 - 由于注释任务的复杂性和解释医学图像所需的高度专业知识(例如,专家放射科医师)。为了对此限制来说,我们提出了一种基于对比学习和在线特征聚类的丰富图像特征自我监督学习方法。为此目的,我们利用各种方式的大超过100,000,000个医学图像的大型训练数据集,包括放射线照相,计算机断层扫描(CT),磁共振(MR)成像和超声检查。我们建议使用这些功能来指导在各种下游任务的监督和混合自我监督/监督制度的模型培训。我们突出了这种策略对射线照相,CT和MR:1的挑战性图像评估问题的许多优点,与最先进的(例如,检测3-7%的AUC升压为3-7%胸部射线照相扫描的异常和脑CT的出血检测); 2)与使用无预先训练(例如,83%,在培训MR扫描MR扫描中的脑转移的模型时,在训练期间训练期间的模型收敛在训练期间的培训期高达85%。 3)对各种图像增强的鲁棒性增加,例如在场中看到的数据变化的强度变化,旋转或缩放反射。
translated by 谷歌翻译
学习医学图像的视觉表示(例如X射线)是医学图像理解的核心,但由于人类注释的稀缺性,其进步已经阻止了它。现有的工作通常依赖于从成像网预处理传输的微调权重,由于图像特征截然不同,这是次优的,或者是从文本报告数据与医学图像配对的基于规则的标签提取,这是不准确的,难以推广。同时,最近的几项研究表明,从自然图像中学习的对比度学习令人兴奋,但由于它们的高层间相似性,我们发现这些方法对医学图像无济于事。我们提出了Concirt,这是一种替代的无监督策略,通过利用自然存在的配对描述性文本来学习医学视觉表示。我们通过两种模式之间的双向对比度目标对医学图像进行预处理编码的新方法是域,无关,不需要其他专家输入。我们通过将预处理的权重转移到4个医学图像分类任务和2个零射击检索任务中来测试交通,并证明它导致图像表示,在大多数设置中,它们都超过了强大的基线。值得注意的是,在所有4个分类任务中,我们的方法仅需要10 \%标记的培训数据与成像网初始化的对应物,以实现更好或可比的性能,从而证明了卓越的数据效率。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
最近,蒙面图像建模(MIM)由于其能力从大量未标记的数据中学习而引起了人们的关注,并且已被证明对涉及自然图像的各种视觉任务有效。同时,由于未标记的图像的数量高,预计3D医学图像中的自我监督学习的潜力预计将是巨大的,以及质量标签的费用和困难。但是,MIM对医学图像的适用性仍然不确定。在本文中,我们证明了掩盖的图像建模方法还可以推进3D医学图像分析,除了自然图像。我们研究掩盖图像建模策略如何从3D医学图像分割的角度利用性能作为代表性的下游任务:i)与天真的对比度学习相比,蒙版的图像建模方法可以加快监督培训的收敛性,甚至更快(1.40美元$ \ times $ \ times $ $ $ )并最终产生更高的骰子分数; ii)预测具有较高掩盖比和相对较小的贴片大小的原始体素值是用于医学图像建模的非平凡的自我监督借口任务; iii)重建的轻质解码器或投影头设计对于3D医学图像上的掩盖图像建模非常有力,该图像加快了训练并降低成本; iv)最后,我们还研究了在不同的实际情况下使用不同图像分辨率和标记的数据比率的MIM方法的有效性。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
有监督的深度学习算法具有自动化筛查,监视和分级的医学图像的巨大潜力。但是,培训表现模型通常需要大量的标记数据,这在医疗领域几乎无法获得。自我监督的对比框架通过首先从未标记的图像中学习来放松这种依赖性。在这项工作中,我们表明使用两种对比方法进行了预处理,即SIMCLR和BYOL,就与年龄相关的黄斑变性(AMD)的临床评估有关深度学习的实用性。在实验中,使用两个大型临床数据集,其中包含7,912名患者的170,427个光学相干断层扫描(OCT)图像,我们评估了从AMD阶段和类型分类到功能性终点的七个下游任务,从七个下游任务进行预处理,从在标签较少的七个任务中,六个任务中有六个显着增加。但是,标准的对比框架具有两个已知的弱点,这些弱点不利于医疗领域的预处理。用于创建正面对比对的几种图像转换不适用于灰度医学扫描。此外,医学图像通常描绘了相同的解剖区域和疾病的严重程度,从而导致许多误导性负面对。为了解决这些问题,我们开发了一种新颖的元数据增强方法,该方法利用了丰富的固有可用患者信息集。为此,我们采用了患者身份,眼睛位置(即左或右)和时间序列数据的记录,以指示典型的不可知的对比关系。通过利用这种经常被忽视的信息,我们元数据增强的对比预处理可带来进一步的好处,并且在下游七个任务中有五个任务中的五个中的五分之一。
translated by 谷歌翻译
使用深度学习对胸部射线照相的自动分析具有巨大的潜力,可以增强患者疾病的临床诊断。但是,深度学习模型通常需要大量的带注释的数据来实现高性能 - 通常是医疗领域适应的障碍。在本文中,我们构建了一个利用放射学报告来通过有限的标记数据(少于1000个示例)来改善医学图像分类性能,以提高医学图像分类性能。具体而言,我们检查了捕获图像预告片,以学习以更少的例子进行训练的高质量医学图像表示。在对卷积编码器和变压器解码器进行联合预测之后,我们将学习的编码器转移到各种分类任务中。平均9多种病理学,我们发现我们的模型在标记培训数据受到限制时,比参见和内域监督的预处理的分类性能更高。
translated by 谷歌翻译
预训练为深入学习支持的X线射线分析中最近的成功奠定了基础。它通过在源域上进行大规模完全监督或自我监督的学习来学习可转移的图像表示。然而,监督的预培训需要复杂和劳动密集的两级人类辅助注释过程,而自我监督的学习不能与监督范例竞争。为了解决这些问题,我们提出了一个跨监督的方法,命名为审查监督(指的)的自由文本报告,该报告从射线照相中获取来自原始放射学报告的自由监督信号。该方法采用了视觉变压器,旨在从每个患者研究中的多种视图中学习联合表示。在极其有限的监督下,引用其在4个众所周知的X射线数据集上的转移学习和自我监督学习对应。此外,甚至是基于具有人辅助结构标签的射线照相的源区的甚至超越方法。因此,有可能取代规范的预训练方法。
translated by 谷歌翻译
大规模数据集的预培训模型,如想象成,是计算机视觉中的标准实践。此范例对于具有小型培训套的任务特别有效,其中高容量模型往往会过度装备。在这项工作中,我们考虑一个自我监督的预训练场景,只能利用目标任务数据。我们考虑数据集,如斯坦福汽车,草图或可可,这是比想象成小的数量的顺序。我们的研究表明,在本文中介绍的Beit或诸如Beit或Variant的去噪对预训练数据的类型和大小比通过比较图像嵌入来训练的流行自我监督方法更加强大。我们获得了竞争性能与ImageNet预训练相比,来自不同域的各种分类数据集。在Coco上,当专注于使用Coco Images进行预训练时,检测和实例分割性能超过了可比设置中的监督Imagenet预训练。
translated by 谷歌翻译
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
由于其最近在减少监督学习的差距方面取得了成功,自我监督的学习方法正在增加计算机愿景的牵引力。在自然语言处理(NLP)中,自我监督的学习和变形金刚已经是选择的方法。最近的文献表明,变压器也在计算机愿景中越来越受欢迎。到目前为止,当使用大规模监督数据或某种共同监督时,视觉变压器已被证明可以很好地工作。在教师网络方面。这些监督的普试视觉变压器在下游任务中实现了非常好的变化,变化最小。在这项工作中,我们调查自我监督学习的预用图像/视觉变压器,然后使用它们进行下游分类任务的优点。我们提出了自我监督的视觉变压器(坐在)并讨论了几种自我监督的培训机制,以获得借口模型。静坐的架构灵活性允许我们将其用作自动统计器,并无缝地使用多个自我监控任务。我们表明,可以在小规模数据集上进行预训练,以便在小型数据集上进行下游分类任务,包括几千个图像而不是数百万的图像。使用公共协议对所提出的方法进行评估标准数据集。结果展示了变压器的强度及其对自我监督学习的适用性。我们通过大边缘表现出现有的自我监督学习方法。我们还观察到坐着很好,很少有镜头学习,并且还表明它通过简单地训练从坐的学到的学习功能的线性分类器来学习有用的表示。预先训练,FineTuning和评估代码将在以下:https://github.com/sara-ahmed/sit。
translated by 谷歌翻译
在过去几年中,无监督的学习取得了很大的进展,特别是通过对比的自我监督学习。用于基准测试自我监督学习的主导数据集已经想象,最近的方法正在接近通过完全监督培训实现的性能。然而,ImageNet DataSet在很大程度上是以对象为中心的,并且目前尚不清楚这些方法的广泛不同的数据集和任务,这些方法是非以对象为中心的,例如数字病理学。虽然自我监督的学习已经开始在这个领域探讨了令人鼓舞的结果,但有理由看起来更接近这个环境与自然图像和想象成的不同。在本文中,我们对组织病理学进行了对比学学习的深入分析,引脚指向对比物镜的表现如何不同,由于组织病理学数据的特征。我们提出了一些考虑因素,例如对比目标和超参数调整的观点。在大量的实验中,我们分析了组织分类的下游性能如何受到这些考虑因素的影响。结果指出了对比学习如何减少数字病理中的注释工作,但需要考虑特定的数据集特征。为了充分利用对比学习目标,需要不同的视野和超参数校准。我们的结果为实现组织病理学应用的自我监督学习的全部潜力铺平了道路。
translated by 谷歌翻译
已经证明对比学习有效地对未标记数据的预训练图像模型有效,并且有希望的医学图像分类等任务的结果。在预训练期间使用配对文本和图像(例如放射性报告和图像)甚至进一步改善了结果。尽管如此,大多数现有方法将图像分类为下游任务,并且对于像语义分割或物体检测等本地化任务可能不是最佳的。因此,我们提出了从愿景和文本(Lovt)的局部代表学习,以实现我们最佳知识,这是针对本地化医学成像任务的第一种文本监督的预训练方法。我们的方法将实例级图像报告对比学习与图像区域和报告句子表示的局部对比学习结合起来。我们评估LOVT和常用的预培训方法,这些评估框架是由五个公共数据集的胸部X光上的18个本地化任务组成的新评估框架。虽然没有单一的最佳方法,但是,在18个研究的任务中,Lovt在11个中最佳地表现出优选的选择本地化任务的首选方法。
translated by 谷歌翻译
这项工作提出了一种新型的自我监督的预训练方法,以学习有效的表示,而没有在组织病理学医学图像上使用放大倍率的因素进行标签。其他最先进的工作主要集中在完全监督的学习方法上,这些学习方法严重依赖人类注释。但是,标记和未标记数据的稀缺性是组织病理学的长期挑战。当前,没有标签的表示学习仍未探索组织病理学领域。提出的方法是放大事先的对比相似性(MPC),可以通过利用放大倍率,电感转移和减少人类先验的宽度乳腺癌数据集中的无标签来进行自我监督的学习。当仅20%的标签用于微调和表现以前的工作中,在完全监督的学习环境中,该方法与恶性分类的最新学习相匹配。它提出了一个假设,并提供了经验证据来支持,从而减少人类优先导致自学​​中有效表示学习。这项工作的实施可在github-https://github.com/prakashchhipa/magnification-prior-self-supervised-method上在线获得。
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译