基于变压器体系结构的预处理的嵌入使NLP社区暴风雨。我们表明,它们可以在数学上被重塑为矢量因素的总和,并展示了如何使用此重塑来研究每个组件的影响。我们提供的证据表明,多头的注意力和馈送方面在所有下游应用中均不同样有用,以及对芬太尼对整个嵌入空间的影响的定量概述。这种方法使我们能够与以前的广泛研究建立连接,从矢量空间各向异性到注意力重量。
translated by 谷歌翻译
理解基于变压器的模型引起了极大的关注,因为它们是机器学习最近技术进步的核心。尽管大多数可解释性方法都依赖于输入的运行模型,但最近的工作表明,零通的方法,即直接解释参数而无需前进/向后传递,对于某些变压器参数是可行的,对于两层注意力网络是可行的。在这项工作中,我们提出了一个理论分析,其中通过将其投影到嵌入式空间(即它们操作的词汇量的空间)中来解释训练有素的变压器的所有参数。我们得出一个简单的理论框架来支持我们的论点,并为其有效性提供了充足的证据。首先,经验分析表明,可以在嵌入空间中解释审计和微调模型的参数。其次,我们提出了框架的两个应用:(a)对齐共享词汇的不同模型的参数,以及(b)通过``翻译''''''''分类器构建分类器的参数``翻译'''''''分类器的参数仅鉴定的不同模型。总体而言,我们的发现为解释方法打开了大门,至少部分地从模型细节中抽象出来,仅在嵌入空间中运行。
translated by 谷歌翻译
Transformer-based models have pushed state of the art in many areas of NLP, but our understanding of what is behind their success is still limited. This paper is the first survey of over 150 studies of the popular BERT model. We review the current state of knowledge about how BERT works, what kind of information it learns and how it is represented, common modifications to its training objectives and architecture, the overparameterization issue and approaches to compression. We then outline directions for future research.
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
基于变压器的语言模型最近在许多自然语言任务中取得了显着的结果。但是,通常通过利用大量培训数据来实现排行榜的性能,并且很少通过将明确的语言知识编码为神经模型。这使许多人质疑语言学对现代自然语言处理的相关性。在本文中,我介绍了几个案例研究,以说明理论语言学和神经语言模型仍然相互关联。首先,语言模型通过提供一个客观的工具来测量语义距离,这对语言学家很有用,语义距离很难使用传统方法。另一方面,语言理论通过提供框架和数据源来探究我们的语言模型,以了解语言理解的特定方面,从而有助于语言建模研究。本论文贡献了三项研究,探讨了语言模型中语法 - 听觉界面的不同方面。在论文的第一部分中,我将语言模型应用于单词类灵活性的问题。我将Mbert作为语义距离测量的来源,我提供了有利于将单词类灵活性分析为方向过程的证据。在论文的第二部分中,我提出了一种方法来测量语言模型中间层的惊奇方法。我的实验表明,包含形态句法异常的句子触发了语言模型早期的惊喜,而不是语义和常识异常。最后,在论文的第三部分中,我适应了一些心理语言学研究,以表明语言模型包含了论证结构结构的知识。总而言之,我的论文在自然语言处理,语言理论和心理语言学之间建立了新的联系,以为语言模型的解释提供新的观点。
translated by 谷歌翻译
Neural sequence models, especially transformers, exhibit a remarkable capacity for in-context learning. They can construct new predictors from sequences of labeled examples $(x, f(x))$ presented in the input without further parameter updates. We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly, by encoding smaller models in their activations, and updating these implicit models as new examples appear in the context. Using linear regression as a prototypical problem, we offer three sources of evidence for this hypothesis. First, we prove by construction that transformers can implement learning algorithms for linear models based on gradient descent and closed-form ridge regression. Second, we show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression, transitioning between different predictors as transformer depth and dataset noise vary, and converging to Bayesian estimators for large widths and depths. Third, we present preliminary evidence that in-context learners share algorithmic features with these predictors: learners' late layers non-linearly encode weight vectors and moment matrices. These results suggest that in-context learning is understandable in algorithmic terms, and that (at least in the linear case) learners may rediscover standard estimation algorithms. Code and reference implementations are released at https://github.com/ekinakyurek/google-research/blob/master/incontext.
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. * Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head attention and the parameter-free position representation and became the other person involved in nearly every detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating our research.† Work performed while at Google Brain.‡ Work performed while at Google Research.
translated by 谷歌翻译
变压器模型是置换等分之一的。要提供输入令牌的顺序和类型信息,通常将位置和段嵌入式添加到输入中。最近的作品提出了具有相对位置编码的位置编码的变化,实现了更好的性能。我们的分析表明,增益实际上来自从输入中将位置信息移动到注意层。由此激励,我们介绍了变压器(饮食)的解耦的位置注意,一个简单但有效的机制,将位置和分段信息编码为变压器模型。该方法具有更快的培训和推理时间,同时在胶水,Xtreme和WMT基准上实现竞争性能。我们进一步概括了我们的方法到远程变压器并显示性能增益。
translated by 谷歌翻译
考虑了基于高维预测器的模式识别。定义了基于变压器编码器的分类器。分析了分类器朝向最佳错误分类概率的分类器的错误分类概率的收敛速率。结果表明,该分类器能够规避维度的诅咒,只要血管升性概率满足合适的分层组成模型。此外,通过考虑自然语言处理中的分类问题,理论上地在本文中地分析的变压器分类器之间的变压器分类器之间的差异,通过考虑自然语言处理中的分类问题来说明。
translated by 谷歌翻译
Multi-head self-attention is a key component of the Transformer, a state-of-the-art architecture for neural machine translation. In this work we evaluate the contribution made by individual attention heads in the encoder to the overall performance of the model and analyze the roles played by them. We find that the most important and confident heads play consistent and often linguistically-interpretable roles. When pruning heads using a method based on stochastic gates and a differentiable relaxation of the L 0 penalty, we observe that specialized heads are last to be pruned. Our novel pruning method removes the vast majority of heads without seriously affecting performance. For example, on the English-Russian WMT dataset, pruning 38 out of 48 encoder heads results in a drop of only 0.15 BLEU. 1
translated by 谷歌翻译
The attention mechanism is considered the backbone of the widely-used Transformer architecture. It contextualizes the input by computing input-specific attention matrices. We find that this mechanism, while powerful and elegant, is not as important as typically thought for pretrained language models. We introduce PAPA, a new probing method that replaces the input-dependent attention matrices with constant ones -- the average attention weights over multiple inputs. We use PAPA to analyze several established pretrained Transformers on six downstream tasks. We find that without any input-dependent attention, all models achieve competitive performance -- an average relative drop of only 8% from the probing baseline. Further, little or no performance drop is observed when replacing half of the input-dependent attention matrices with constant (input-independent) ones. Interestingly, we show that better-performing models lose more from applying our method than weaker models, suggesting that the utilization of the input-dependent attention mechanism might be a factor in their success. Our results motivate research on simpler alternatives to input-dependent attention, as well as on methods for better utilization of this mechanism in the Transformer architecture.
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BIGBIRD, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BIGBIRD is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BIGBIRD drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.
translated by 谷歌翻译
Large pre-trained neural networks such as BERT have had great recent success in NLP, motivating a growing body of research investigating what aspects of language they are able to learn from unlabeled data. Most recent analysis has focused on model outputs (e.g., language model surprisal) or internal vector representations (e.g., probing classifiers). Complementary to these works, we propose methods for analyzing the attention mechanisms of pre-trained models and apply them to BERT. BERT's attention heads exhibit patterns such as attending to delimiter tokens, specific positional offsets, or broadly attending over the whole sentence, with heads in the same layer often exhibiting similar behaviors. We further show that certain attention heads correspond well to linguistic notions of syntax and coreference. For example, we find heads that attend to the direct objects of verbs, determiners of nouns, objects of prepositions, and coreferent mentions with remarkably high accuracy. Lastly, we propose an attention-based probing classifier and use it to further demonstrate that substantial syntactic information is captured in BERT's attention. 1 Code will be released at https://github.com/ clarkkev/attention-analysis.2 We use the English base-sized model.
translated by 谷歌翻译
目前,用于训练语言模型的最广泛的神经网络架构是所谓的BERT,导致各种自然语言处理(NLP)任务的改进。通常,BERT模型中的参数的数量越大,这些NLP任务中获得的结果越好。不幸的是,内存消耗和训练持续时间随着这些模型的大小而大大增加。在本文中,我们调查了较小的BERT模型的各种训练技术:我们将不同的方法与Albert,Roberta和相对位置编码等其他BERT变体相结合。此外,我们提出了两个新的微调修改,导致更好的性能:类开始终端标记和修改形式的线性链条条件随机字段。此外,我们介绍了整个词的注意力,从而降低了伯特存储器的使用,并导致性能的小幅增加,与古典的多重关注相比。我们评估了这些技术的五个公共德国命名实体识别(NER)任务,其中两条由这篇文章引入了两项任务。
translated by 谷歌翻译
最近经过彻底调查了变压器多头自我关注机制。一方面,研究人员对理解为什么以及变压器如何工作。另一方面,他们提出了新的注意增强方法,使变压器更准确,高效和可解释。在本文中,我们在循环管道中协同促使这两条研究线,首先找到了重要的任务特定的注意模式。然后应用那些模式,不仅应用于原始模型,还应用于较小的模型,作为人类引导的知识蒸馏过程。在提取摘要任务的情况下,在案例研究中对我们的管道的好处。在受欢迎的Bertsum模型中找到三种有意义的关注模式之后,实验表明,当我们注入这种模式时,原始和较小模型都显示出性能的改进,并且可以说是可争议的解释性。
translated by 谷歌翻译
本教程展示了工作流程,将文本数据纳入精算分类和回归任务。主要重点是采用基于变压器模型的方法。平均长度为400个单词的车祸描述的数据集,英语和德语可用,以及具有简短财产保险索赔的数据集用来证明这些技术。案例研究应对与多语言环境和长输入序列有关的挑战。他们还展示了解释模型输出,评估和改善模型性能的方法,通过将模型调整到应用程序领域或特定预测任务。最后,该教程提供了在没有或仅有少数标记数据的情况下处理分类任务的实用方法。通过使用最少的预处理和微调的现成自然语言处理(NLP)模型的语言理解技能(NLP)模型实现的结果清楚地证明了用于实际应用的转移学习能力。
translated by 谷歌翻译