包含多种类型的节点和边缘的异质图在各种领域都普遍存在,包括书目网络,社交媒体和知识图。作为分析异质图的基本任务,相关度量旨在计算不同类型的两个对象之间的相关性,这些对象已在许多应用程序中使用,例如Web搜索,建议和社区检测。大多数现有的相关性措施都集中在对象具有相同类型的均质网络上,并为异质图制定了一些措施,但它们通常需要预定义的元路径。定义有意义的元路径需要大量的领域知识,这在很大程度上限制了其应用,尤其是在诸如知识图之类的图形富含模式的异质图上。最近,图形神经网络(GNN)已被广泛应用于许多图挖掘任务,但尚未用于测量相关性。为了解决上述问题,我们提出了一种基于GNN的新型相关性措施,即GSIM。具体而言,我们首先是理论上分析的,并表明GNN有效地测量图中节点的相关性。然后,我们建议基于上下文路径的图形神经网络(CP-GNN)自动利用异质图中的语义。此外,我们利用CP-GNN来支持任何类型的两个对象之间的相关性度量。广泛的实验表明,GSIM优于现有措施。
translated by 谷歌翻译
Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its metapath based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.
translated by 谷歌翻译
许多真实世界图(网络)是具有不同类型的节点和边缘的异构。异构图嵌入,旨在学习异构图的低维节点表示,对于各种下游应用至关重要。已经提出了许多基于元路径的嵌入方法来学习近年来异构图的语义信息。然而,在学习异构图形嵌入时,大多数现有技术都在图形结构信息中忽略了图形结构信息。本文提出了一种新颖的结构意识异构图形神经网络(SHGNN),以解决上述限制。详细地,我们首先利用特征传播模块来捕获元路径中中间节点的本地结构信息。接下来,我们使用树关注聚合器将图形结构信息结合到元路径上的聚合模块中。最后,我们利用了元路径聚合器熔断来自不同元路径的聚合的信息。我们对节点分类和聚类任务进行了实验,并在基准数据集中实现了最先进的结果,该数据集显示了我们所提出的方法的有效性。
translated by 谷歌翻译
用于异质图嵌入的图形神经网络是通过探索异质图的异质性和语义来将节点投射到低维空间中。但是,一方面,大多数现有的异质图嵌入方法要么不足以对特定语义下的局部结构进行建模,要么在汇总信息时忽略异质性。另一方面,来自多种语义的表示形式未全面整合以获得多功能节点嵌入。为了解决该问题,我们通过引入多视图表示学习的概念,提出了一个具有多视图表示学习(名为MV-HETGNN)的异质图神经网络(称为MV-HETGNN)。所提出的模型由节点特征转换,特定于视图的自我图编码和自动多视图融合,以彻底学习复杂的结构和语义信息,以生成全面的节点表示。在三个现实世界的异质图数据集上进行的广泛实验表明,所提出的MV-HETGNN模型始终优于各种下游任务中所有最新的GNN基准,例如节点分类,节点群集和链接预测。
translated by 谷歌翻译
Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node-and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm-HGSampling-for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%-21% on various downstream tasks. The dataset and source code of HGT are publicly available at https://github.com/acbull/pyHGT.
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
注意机制使图形神经网络(GNN)能够学习目标节点与其单跳邻居之间的注意力权重,从而进一步提高性能。但是,大多数现有的GNN都针对均匀图,其中每一层只能汇总单跳邻居的信息。堆叠多层网络引入了相当大的噪音,并且很容易导致过度平滑。我们在这里提出了一种多跃波异质邻域信息融合图表示方法(MHNF)。具体而言,我们提出了一个混合元自动提取模型,以有效提取多ihop混合邻居。然后,我们制定了一个跳级的异质信息聚合模型,该模型在同一混合Metapath中选择性地汇总了不同的跳跃邻域信息。最后,构建了分层语义注意融合模型(HSAF),该模型可以有效地整合不同的互动和不同的路径邻域信息。以这种方式,本文解决了汇总MultiHop邻里信息和学习目标任务的混合元数据的问题。这减轻了手动指定Metapaths的限制。此外,HSAF可以提取Metapaths的内部节点信息,并更好地整合存在不同级别的语义信息。真实数据集的实验结果表明,MHNF在最先进的基准中取得了最佳或竞争性能,仅1/10〜1/100参数和计算预算。我们的代码可在https://github.com/phd-lanyu/mhnf上公开获取。
translated by 谷歌翻译
由于图神经网络(GNN)的成功和异质信息网络的广泛应用,近年来,异质图学习近年来引起了极大的关注。已经提出了各种异质图神经网络,以概括GNN来处理异质图。不幸的是,这些方法通过各种复杂的模块对异质性进行建模。本文旨在提出一个简单而有效的框架,以使均质GNN具有足够的处理异质图的能力。具体而言,我们提出了基于关系嵌入的图形神经网络(RE-GNNS),该图形仅使用一个参数来嵌入边缘类型关系和自动连接的重要性。为了同时优化这些关系嵌入和其他参数,提出了一个梯度缩放因子来约束嵌入以收敛到合适的值。此外,我们从理论上证明,与基于元路径的异质GNN相比,我们的RE-GNN具有更高的表现力。关于节点分类任务的广泛实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
近三年来,异质图神经网络(HGNN)吸引了研究的兴趣。大多数现有的HGNN分为两类。一个类是基于元路径的HGNN,要么需要域知识才能手工制作元路径,要么花费大量时间和内存来自动构建元路径。另一个类不依赖元路径结构。它将均匀的卷积图神经网络(Conv-GNN)作为骨架,并通过引入节点型和边缘型依赖性参数将其扩展到异质图。不管元路径依赖性如何,大多数现有的HGNN都采用浅层探测器(例如GCN和GAT)来汇总邻里信息,并且可能有限地捕获高阶邻里信息的能力。在这项工作中,我们提出了两个异构图树网络模型:异质图树卷积网络(HETGTCN)和异质图树注意网络(HETGTAN),它们不依赖元路径来在两个节点特征和图形结构中编码异质性。在三个现实世界的异质图数据上进行了广泛的实验表明,所提出的HETGTCN和HETGTAN具有有效的效率,并且一致地超过了所有最先进的HGNN基准在半监视的节点分类任务上,并且可以深入不受损害的性能。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have attracted increasing attention in recent years and have achieved excellent performance in semi-supervised node classification tasks. The success of most GNNs relies on one fundamental assumption, i.e., the original graph structure data is available. However, recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph, making it necessary to learn comprehensive and robust graph structures for downstream tasks, rather than relying only on the raw graph structure. In light of this, we seek to learn optimal graph structures for downstream tasks and propose a novel framework for semi-supervised classification. Specifically, based on the structural context information of graph and node representations, we encode the complex interactions in semantics and generate semantic graphs to preserve the global structure. Moreover, we develop a novel multi-measure attention layer to optimize the similarity rather than prescribing it a priori, so that the similarity can be adaptively evaluated by integrating measures. These graphs are fused and optimized together with GNN towards semi-supervised classification objective. Extensive experiments and ablation studies on six real-world datasets clearly demonstrate the effectiveness of our proposed model and the contribution of each component.
translated by 谷歌翻译
最近,图神经网络显示了建模基于网络的推荐系统中复杂拓扑结构的优势。由于节点之间的各种相互作用以及来自各种类型的节点和边缘的大量语义,因此在多重异质网络中学习表达性节点表示的研究兴趣爆发。推荐系统中最重要的任务之一是预测特定边缘类型下两个节点之间的潜在连接(即关系)。尽管现有的研究利用明确的元数据来汇总邻居,但实际上,它们仅考虑了关系内部的元数据,因此无法通过相互关联信息来利用潜在的提升。此外,在各种关系下,尤其是在越来越多的节点和边缘类型的情况下,全面利用相互关系的元数据并不总是直接的。此外,两个节点之间不同关系的贡献很难衡量。为了应对挑战,我们提出了Hybridgnn,这是一种具有混合聚集流和分层的端到端GNN模型,以在多路复用方案中充分利用异质性。具体而言,Hybridgnn应用了一个随机的关系探索模块来利用不同关系之间的多重性属性。然后,我们的模型利用在关系内的元数据和随机探索下的混合聚集流以学习丰富的语义。为了探索不同聚合流的重要性并利用多重性属性,我们提出了一个新型的分层注意模块,该模块既利用了Metapath级别的注意力和关系级的关注。广泛的实验结果表明,与几个最先进的基线相比,Hybridgnn取得了最佳性能。
translated by 谷歌翻译
由于学术和工业领域的异质图无处不在,研究人员最近提出了许多异质图神经网络(HGNN)。在本文中,我们不再采用更强大的HGNN模型,而是有兴趣设计一个多功能的插件模块,该模块解释了从预先训练的HGNN中提取的关系知识。据我们所知,我们是第一个在异质图上提出高阶(雇用)知识蒸馏框架的人,无论HGNN的模型体系结构如何,它都可以显着提高预测性能。具体而言,我们的雇用框架最初执行一阶节点级知识蒸馏,该蒸馏曲线及其预测逻辑编码了老师HGNN的语义。同时,二阶关系级知识蒸馏模仿了教师HGNN生成的不同类型的节点嵌入之间的关系相关性。在各种流行的HGNN模型和三个现实世界的异质图上进行了广泛的实验表明,我们的方法获得了一致且相当大的性能增强,证明了其有效性和泛化能力。
translated by 谷歌翻译
异质图具有多个节点和边缘类型,并且在语义上比同质图更丰富。为了学习这种复杂的语义,许多用于异质图的图形神经网络方法使用Metapaths捕获节点之间的多跳相互作用。通常,非目标节点的功能未纳入学习过程。但是,可以存在涉及多个节点或边缘的非线性高阶相互作用。在本文中,我们提出了Simplicial Graph注意网络(SGAT),这是一种简单的复杂方法,可以通过将非目标节点的特征放在简单上来表示这种高阶相互作用。然后,我们使用注意机制和上邻接来生成表示。我们凭经验证明了方法在异质图数据集上使用节点分类任务的方法的功效,并进一步显示了SGAT通过采用随机节点特征来提取结构信息的能力。数值实验表明,SGAT的性能优于其他当前最新的异质图学习方法。
translated by 谷歌翻译
异构信息网络(HIN)捕获各种实体之间的复杂关系,并已广泛用于提高各种数据挖掘任务的有效性,例如在推荐系统中。许多现有的文欣推荐算法利用手工制作的元路径来提取来自网络的语义信息。这些算法依赖于广泛的域知识,可以选择最佳的元路径集。对于HIN与众多节点和链路类型高度复杂的应用程序,手工制作方法的方法太繁琐,并且容易出错。为了解决这个问题,我们提出了基于加强学习的元路径选择(RMS)框架,以选择有效的元路径,并将它们包含在现有的基于元路径的推荐中。为了识别高质量的元路径,RMS列举了基于加强学习(RL)的策略网络(代理),从而从下游推荐任务的性能获取奖励。我们设计一个基于HIN的推荐模型,HREC,有效地使用元路径信息。我们将HREC与RMS进行了整合并导出了我们的推荐解决方案,RMS-HREC,它自动使用有效的元路径。实验对实时数据集表明,我们的算法通过自动捕获重要元路径,可以显着提高推荐模型的性能。
translated by 谷歌翻译
近年来,异构图形神经网络(HGNNS)一直在开花,但每个工作所使用的独特数据处理和评估设置会让他们的进步完全了解。在这项工作中,我们通过使用其官方代码,数据集,设置和超参数来展示12个最近的HGNN的系统再现,揭示了关于HGNN的进展的令人惊讶的结果。我们发现,由于设置不当,简单的均匀GNN,例如GCN和GAT在很大程度上低估了。具有适当输入的GAT通常可以匹配或优于各种场景的所有现有HGNN。为了促进稳健和可重复的HGNN研究,我们构建异构图形基准(HGB),由具有三个任务的11个不同数据集组成。 HGB标准化异构图数据分割,特征处理和性能评估的过程。最后,我们介绍了一个简单但非常强大的基线简单 - HGN - 这显着优于HGB上以前的所有模型 - 以加速未来HGNN的进步。
translated by 谷歌翻译
语义关系预测旨在挖掘异质图中对象之间的隐式关系,这些关系由不同类型的对象和不同类型的链接组成。在现实世界中,新的语义关系不断出现,它们通常仅带有几个标记的数据。由于多种异构图中存在各种语义关系,因此可以从某些现有的语义关系中开采可转移的知识,以帮助预测新的语义关系,几乎没有标记的数据。这激发了一个新的问题,即跨异构图的几乎没有语义关系预测。但是,现有方法无法解决此问题,因为它们不仅需要大量的标记样本作为输入,而且还集中在具有固定异质性的单个图上。针对这个新颖而充满挑战的问题,在本文中,我们提出了一个基于元学习的图形神经网络,用于语义关系预测,名为Metags。首先,metags将对象之间的图形结构分解为多个归一化子图,然后采用两视图形神经网络来捕获这些子图的本地异质信息和全局结构信息。其次,Metags通过超出型网络汇总了这些子图的信息,该网络可以从现有的语义关系中学习并适应新的语义关系。第三,使用良好的初始化的两视图形神经网络和超出型网络,Metags可以有效地从不同的图形中学习新的语义关系,同时克服少数标记数据的限制。在三个现实世界数据集上进行的广泛实验表明,元数据的性能优于最先进的方法。
translated by 谷歌翻译
基于图形卷积的方法已成功应用于同质图上的表示学习,其中具有相同标签或相似属性的节点往往相互连接。由于这些方法使用的图形卷积网络(GCN)的同义假设,它们不适合异质图,其中具有不同标记或不同属性的节点往往相邻。几种方法试图解决这个异质问题,但是它们没有改变GCN的基本聚合机制,因为它们依靠求和操作员来汇总邻近节点的信息,这隐含地遵守同质假设。在这里,我们介绍了一种新颖的聚合机制,并开发了基于随机步行聚集的图形神经网络(称为RAW-GNN)方法。提出的方法将随机步行策略与图神经网络集成在一起。新方法利用广度优先的随机步行搜索来捕获同质信息和深度优先搜索以收集异性信息。它用基于路径的社区取代了传统社区,并基于经常性神经网络引入了新的基于路径的聚合器。这些设计使RAW-GNN适用于同质图和异质图。广泛的实验结果表明,新方法在各种同质图和异质图上实现了最先进的性能。
translated by 谷歌翻译
图形神经网络(GNN)在解决图形结构数据(即网络)方面的各种分析任务方面已广受欢迎。典型的gnns及其变体遵循一种消息的方式,该方式通过网络拓扑沿网络拓扑的特征传播过程获得网络表示,然而,它们忽略了许多现实世界网络中存在的丰富文本语义(例如,局部单词序列)。现有的文本丰富网络方法通过主要利用内部信息(例如主题或短语/单词)来整合文本语义,这些信息通常无法全面地挖掘文本语义,从而限制了网络结构和文本语义之间的相互指导。为了解决这些问题,我们提出了一个具有外部知识(TEKO)的新型文本富裕的图形神经网络,以充分利用文本丰富的网络中的结构和文本信息。具体而言,我们首先提出一个灵活的异质语义网络,该网络结合了文档和实体之间的高质量实体和互动。然后,我们介绍两种类型的外部知识,即结构化的三胞胎和非结构化实体描述,以更深入地了解文本语义。我们进一步为构建的异质语义网络设计了互惠卷积机制,使网络结构和文本语义能够相互协作并学习高级网络表示。在四个公共文本丰富的网络以及一个大规模的电子商务搜索数据集上进行了广泛的实验结果,这说明了Teko优于最先进的基线。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
图表是一个宇宙数据结构,广泛用于组织现实世界中的数据。像交通网络,社交和学术网络这样的各种实际网络网络可以由图表代表。近年来,目睹了在网络中代表顶点的快速发展,进入低维矢量空间,称为网络表示学习。表示学习可以促进图形数据上的新算法的设计。在本调查中,我们对网络代表学习的当前文献进行了全面审查。现有算法可以分为三组:浅埋模型,异构网络嵌入模型,图形神经网络的模型。我们为每个类别审查最先进的算法,并讨论这些算法之间的基本差异。调查的一个优点是,我们系统地研究了不同类别的算法底层的理论基础,这提供了深入的见解,以更好地了解网络表示学习领域的发展。
translated by 谷歌翻译