随着交通预测技术的发展,时尚预测模型引起了学术界社区和工业的越来越多。然而,大多数现有的研究侧重于减少模型的预测误差,而是忽略由区域内空间事件的不均匀分布引起的错误。在本文中,我们研究了区域分区问题,即最佳网格尺寸选择问题(OGSS),其目的是通过选择最佳网格尺寸来最小化时空预测模型的真正误差。为了解决OGSS,我们通过最小化其上限来分析时空预测模型的真正误差的上限,并最大限度地减少真实误差。通过深入分析,我们发现当模型网格数量从1增加到最大允许值时,真正误差的上限将减少随后增加。然后,我们提出了两种算法,即三元搜索和迭代方法,自动找到最佳网格尺寸。最后,实验验证了预测误差是否具有与其上限相同的趋势,并且实际误差的上限相对于模型网格数量的上限的变化趋势将降低。同时,在一个情况下,通过选择最佳网格尺寸,可以提高最先进的预测算法的订单调度结果高达13.6%,这表明了我们在调整该区域上的方法的有效性用于时空预测模型的分区。
translated by 谷歌翻译
自行车共享系统(BSSS)作为创新的运输服务。鉴于这些系统致力于通过促进环境和经济可持续性以及改善人口的生活质量,这些系统致力于消除当前全球担忧的许多担忧,确保BSS的正常运作至关重要。良好的用户过渡模式知识是对服务的质量和可操作性的决定性贡献。类似的和不平衡的用户的过渡模式导致这些系统遭受自行车不平衡,从长远来看,导致客户损失很大。自行车重新平衡的策略变得重要,以解决这个问题,为此,自行车交通预测至关重要,因为它允许更有效地运行并提前做出反应。在这项工作中,我们提出了一种基于图形神经网络嵌入的自行车TRIPS预测因子,考虑到站分组,气象条件,地理距离和旅行模式。我们在纽约市BSS(CITIBIKE)数据中评估了我们的方法,并将其与四个基线进行比较,包括非聚类方法。为了解决我们的问题的特殊性,我们开发了自适应转换约束聚类加(ADATC +)算法,消除了以前的工作的缺点。我们的实验证据证据细胞化(88%的准确性,而无需聚类83%),哪种聚类技术最适合这个问题。对于ADATC +,链路预测任务的准确性总是较高,而不是基于基准群集方法,而当网站相同,虽然在升级网络时不会降低性能,但在训练有素的模型中不匹配。
translated by 谷歌翻译
乘车共享因其方便和乘客的便利性和成本效率而获得了全球知名度,以及其强大的潜力有助于实施联合国可持续发展目标。结果,近年来,目睹了RSODP的研究兴趣(用于乘车共享的原产地预测)问题,目的是预测未来的乘车共享请求并提前为车辆提供时间表。大多数现有的预测模型都利用深度学习,但是它们无法有效地考虑空间和时间动态。在本文中,提出了基准的门控注意复发网络(BGARN),该网络(BGARN)使用具有多头门的图形卷积来提取空间特征,以提取时间特征的复发模块以及基线转移层来计算最终结果。该模型是使用Pytorch和DGL(Deep Graph库)实施的,并使用纽约出租车需求数据集对实验进行了评估。结果表明,BGARN在预测准确性方面优于所有其他现有模型。
translated by 谷歌翻译
一个精心设计的警察巡逻路线设计对于在社会中提供社区安全和安全性至关重要。以前的作品主要专注于预测犯罪事件与历史犯罪数据。从基于位置的社交网络或签到和兴趣点(POI)数据的使用基本上地利用了用于设计有效警察巡逻的景点和景点的大规模移动数据。鉴于在现实情况下有多个警察在职,这使得解决问题更加复杂。在本文中,我们使用核对,犯罪,事件响应数据和POI信息制定多个警察的动态犯罪巡逻计划。我们提出了一个联合学习和非随机优化方法,了解可能的解决方案,其中多个警察同时巡逻高犯罪风险地区,而不是低犯罪风险领域。后来,实现了元启发式遗传算法(GA)和Cuckoo搜索(CS)以查找最佳路由。验证了所提出的解决方案的性能,并将使用现实世界数据集与几种最先进的方法进行了验证。
translated by 谷歌翻译
我们为在城市环境中重新设计警察巡逻区的数据驱动优化框架。目标是在地理区域重新平衡警察工作,并将响应时间减少到紧急呼叫。通过整合多个数据来源,我们开发了警察应急响应的随机模型,包括警察事件报告,人口调查和交通数据。使用此随机模型,我们使用混合整数线性规划优化区域重新设计计划。我们拟议的设计由亚特兰大警察部门于2019年3月实施。通过在重新设计之前和之后的数据之前和之后分析数据,我们表明新的设计将响应时间减少到高优先级的911呼叫,并通过警察工作负载的不平衡。在不同的区域中达到43 \%。
translated by 谷歌翻译
乘客和货物交付的可行性服务服务的无处不在的增长在运输系统领域内带来了各种挑战和机遇。因此,正在开发智能运输系统以最大限度地提高运营盈利能力,用户的便利性和环境可持续性。与riveShiening的最后一次交付的增长呼吁进行高效且凝聚力的系统,运输乘客和货物。现有方法使用静态路由方法来解决考虑到请求的需求和在路线规划期间车辆之间的货物转移。在本文中,我们为合并的商品和乘客运输提供了一种动态和需求意识的舰队管理框架,该乘客运输能够通过允许司机谈判到相互合适的价格中的决策过程中的乘客和司机。乘客接受/拒绝,(2)货物与车辆的匹配,以及货物的多跳转移,(3)基于该插入成本,在沿着它们的途径来动态地为每个车辆提供最佳路线,从而确定匹配的插入成本(4)使用深度加强学习(RL),(5)允许在每个车辆的分布推断,同时共同优化舰队目标,向预期的高乘客和商品需求调度怠速车辆。我们所提出的模型可在每个车辆内独立部署,因为这最大限度地减少了与分布式系统的增长相关的计算成本,并将其民主化决策对每个人进行决策。与各种车辆类型,商品和乘客效用的仿真表明,与不考虑联合负载运输或动态多跳路线规划的其他方法相比,我们的方法的有效性。
translated by 谷歌翻译
估计到达时间(ETA)预测时间(也称为旅行时间估计)是针对各种智能运输应用程序(例如导航,路线规划和乘车服务)的基本任务。为了准确预测一条路线的旅行时间,必须考虑到上下文和预测因素,例如空间 - 周期性的互动,驾驶行为和交通拥堵传播的推断。先前在百度地图上部署的ETA预测模型已经解决了时空相互作用(constgat)和驾驶行为(SSML)的因素。在这项工作中,我们专注于建模交通拥堵传播模式以提高ETA性能。交通拥堵的传播模式建模具有挑战性,它需要考虑到随着时间的推移影响区域的影响区域,以及延迟变化随时间变化的累积影响,这是由于道路网络上的流量事件引起的。在本文中,我们提出了一个实用的工业级ETA预测框架,名为Dueta。具体而言,我们基于交通模式的相关性构建了一个对拥堵敏感的图,并开发了一种路线感知图形变压器,以直接学习路段的长距离相关性。该设计使Dueta能够捕获空间遥远但与交通状况高度相关的路段对之间的相互作用。广泛的实验是在从百度地图收集的大型现实世界数据集上进行的。实验结果表明,ETA预测可以从学习的交通拥堵传播模式中显着受益。此外,Dueta已经在Baidu Maps的生产中部署,每天都有数十亿个请求。这表明Dueta是用于大规模ETA预测服务的工业级和强大的解决方案。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型方法来解决涉及大量独立关注者的二重性程序,作为一种特殊情况,其中包括两阶段随机编程。我们提出了一个优化模型,该模型明确考虑了追随者的采样子集,并利用机器学习模型来估计未采样关注者的客观值。与现有方法不同,我们将机器学习模型培训嵌入到优化问题中,这使我们能够采用无法使用领导者决策来表示的一般追随者功能。我们证明了由原始目标函数衡量的生成领导者决策的最佳差距,该目标函数考虑了整个追随者集。然后,我们开发追随者采样算法来收紧界限和一种表示追随者功能的表示方法,可以用作嵌入式机器学习模型的输入。使用骑自行车网络设计问题的合成实例,我们比较方法的计算性能与基线方法。我们的方法为追随者的目标价值观提供了更准确的预测,更重要的是,产生了更高质量的领导者决策。最后,我们对骑自行车基础设施计划进行了现实世界中的案例研究,我们采用方法来解决超过一百万关注者的网络设计问题。与当前的自行车网络扩展实践相比,我们的方法提出了有利的性能。
translated by 谷歌翻译
这项工作解决了逆线优化,其中目标是推断线性程序的未知成本向量。具体地,我们考虑数据驱动的设置,其中可用数据是对应于线性程序的不同实例的最佳解决方案的嘈杂的观察。我们介绍了一个问题的新配方,与其他现有方法相比,允许恢复较少的限制性和一般更适当的可允许成本估算。可以表明,该逆优化问题产生有限数量的解决方案,并且我们开发了一个精确的两相算法来确定所有此类解决方案。此外,我们提出了一种有效的分解算法来解决问题的大实例。该算法自然地扩展到在线学习环境,可以用于提供成本估计的快速更新,因为新数据随着时间的推移可用。对于在线设置,我们进一步开发了一种有效的自适应采样策略,指导下一个样本的选择。所提出的方法的功效在涉及两种应用,客户偏好学习和生产计划的成本估算的计算实验中进行了证明。结果表明计算和采样努力的显着减少。
translated by 谷歌翻译
随着数据爆炸的不断趋势,将数据服务器从数据服务器传递到最终用户的数据包导致移动网络的Fronthaul和Reachthaula业务增加压力。为缓解此问题,将流行内容更接近最终用户的缓存是一种减少网络拥塞和提高用户体验的有效方法。为了找到内容缓存的最佳位置,许多传统方法构造了各种混合整数线性编程(MILP)模型。然而,由于维度固有的诅咒,这种方法可能无法支持在线决策。本文提出了一种用于主动缓存的新框架。该框架通过将优化问题转换为灰度图像来利用数据驱动技术来合并基于模型的优化。对于并行培训和简单的设计目的,所提出的MILP模型首先被分解为多个子问题,然后,训练卷积神经网络(CNNS)以预测这些子问题的内容高速缓存位置。此外,由于MILP模型分解忽略子问题之间的内部效果,因此CNNS的输出具有不可行的解决方案的风险。因此,提供了两个算法:第一个使用来自CNN的预测作为减少决策变量的数量的额外约束;第二个采用CNNS的输出来加速本地搜索。数值结果表明,与MILP解决方案相比,所提出的方案可以减少71.6%的计算时间,只有0.8%的额外性能成本,这为实时提供了高质量的决策。
translated by 谷歌翻译
这项工作引入了一种新颖的多变量时间点过程,部分均值行为泊松(PMBP)过程,可以利用以将多变量霍克斯过程适合部分间隔删除的数据,该数据包括在尺寸和间隔子集上的事件时间戳的混合中组成的数据。 - 委员会互补尺寸的事件计数。首先,我们通过其条件强度定义PMBP过程,并导出子临界性的规律性条件。我们展示了鹰过程和MBP过程(Rizoiu等人)是PMBP过程的特殊情况。其次,我们提供了能够计算PMBP过程的条件强度和采样事件历史的数字方案。第三,我们通过使用合成和现实世界数据集来证明PMBP过程的适用性:我们测试PMBP过程的能力,以恢复多变量霍克参数给出鹰过程的样本事件历史。接下来,我们在YouTube流行预测任务上评估PMBP过程,并表明它优于当前最先进的鹰强度过程(Rizoiu等人。(2017b))。最后,在Covid19的策划数据集上,关于国家样本的Covid19每日案例计数和Covid19相关的新闻文章,我们展示了PMBP拟合参数上的聚类使各国的分类能够分类案件和新闻的国家级互动报告。
translated by 谷歌翻译
我们研究了具有动态,可能的周期性的流量的预测问题和区域之间的关节空间依赖关系。鉴于从时隙0到T-1的城市中区的聚合流入和流出流量,我们预测了任何区域的时间t的流量。该地区的现有技术通常以脱钩的方式考虑空间和时间依赖性,或者在具有大量超参数曲调的训练中是相当的计算密集。我们提出了ST-TIS,一种新颖,轻巧和准确的空间变压器,具有信息融合和区域采样进行交通预测。 ST-TIS将规范变压器与信息融合和区域采样延伸。信息融合模块捕获区域之间的复杂空间依赖关系。该区域采样模块是提高效率和预测精度,将计算复杂性切割为依赖性学习从$ O(n ^ 2)$到$ O(n \ sqrt {n})$,其中n是区域的数量。比最先进的模型的参数较少,我们模型的离线培训在调整和计算方面明显更快(培训时间和网络参数减少高达90±90 \%)。尽管存在这种培训效率,但大量实验表明,ST-TIS在网上预测中大幅度更准确,而不是最先进的方法(平均改善高达11 \%$ 11 \%$ ON MAPE上的$ 14 \%$ 14 \%$ 14 \%$ ON MAPE) 。
translated by 谷歌翻译
在带有电动车队的乘车系统中,充电是一个复杂的决策过程。大多数电动汽车(EV)出租车服务要求驾驶员做出利己主义决定,从而导致分散的临时充电策略。车辆之间通常缺乏或不共享移动性系统的当前状态,因此无法做出最佳的决定。大多数现有方法都不将时间,位置和持续时间结合到全面的控制算法中,也不适合实时操作。因此,我们提出了一种实时预测性充电方法,用于使用一个名为“闲置时间开发(ITX)”的单个操作员进行乘车服务,该方法预测了车辆闲置并利用这些时期来收获能量的时期。它依靠图形卷积网络和线性分配算法来设计最佳的车辆和充电站配对,以最大程度地提高利用的空闲时间。我们通过对纽约市现实世界数据集的广泛模拟研究评估了我们的方法。结果表明,就货币奖励功能而言,ITX的表现优于所有基线方法至少提高5%(相当于6,000个车辆操作的$ 70,000),该奖励奖励功能的建模旨在复制现实世界中乘车系统的盈利能力。此外,与基线方法相比,ITX可以将延迟至少减少4.68%,并且通常通过促进顾客在整个车队中更好地传播乘客的舒适度。我们的结果还表明,ITX使车辆能够在白天收获能量,稳定电池水平,并增加需求意外激增的弹性。最后,与表现最佳的基线策略相比,峰值负载减少了17.39%,这使网格操作员受益,并为更可持续的电网使用铺平了道路。
translated by 谷歌翻译
如今,世界各地的城市推出了电动公共汽车以优化城市交通,减少当地碳排放量。为了减少碳排放并最大化电动公共汽车的效用,重要的是为它们选择合适的路线很重要。传统上,路线选择是在专用调查的基础上,这在时间和劳动力成本高昂。在本文中,我们主要关注智能规划电动公交线路,具体取决于整个城市各地区的独特需求。我们提出了一种铺张山庄,一个路线规划系统,利用深度神经网络和多层的感知者,以预测未来人民的旅行和整个城市的未来运输碳排放。鉴于人们旅行和运输碳排放的未来信息,我们利用了一种贪婪的机制来推荐将以理想状态离开的电动公交车的公交线路。此外,从异构城市数据集中提取两个神经网络的代表特征。我们通过对珠海省珠海真实世界资源的大量实验来评估我们的方法。结果表明,我们设计的基于神经网络的算法始终如一地优于典型的基线。此外,电动公交车的建议路线有助于降低碳排放的峰值,并充分利用城市的电动公共汽车。
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
犯罪预测问题的现有方法在表达细节时不成功,因为它们将概率值分配给大区域。本文介绍了一种具有图形卷积网络(GCN)和多变量高斯分布的新架构,以执行适用于任何时空数据的高分辨率预测。通过利用GCN的灵活结构并提供细分算法,我们以高分辨率在高分辨率下解决稀疏问题。我们用图形卷积门控经常性单位(Graph-concgru)构建我们的模型,以学习空间,时间和分类关系。在图形的每个节点中,我们学习来自GCN的提取特征的多变量概率分布。我们对现实生活和合成数据集进行实验,我们的模型获得了最佳验证和基线模型中的最佳测试分数,具有显着改进。我们表明我们的模型不仅是生成的,而且是精确的。
translated by 谷歌翻译
基于A/B测试的政策评估引起了人们对数字营销的极大兴趣,但是在乘车平台(例如Uber和Didi)中的这种评估主要是由于其时间和/或空间依赖性实验的复杂结构而被很好地研究。 。本文的目的是在乘车平台中的政策评估中进行,目的是在平台的政策和换回设计下的感兴趣结果之间建立因果关系。我们提出了一个基于时间变化系数决策过程(VCDP)模型的新型潜在结果框架,以捕获时间依赖性实验中的动态治疗效果。我们通过将其分解为直接效应总和(DE)和间接效应(IE)来进一步表征平均治疗效应。我们为DE和IE制定了估计和推理程序。此外,我们提出了一个时空VCDP来处理时空依赖性实验。对于这两个VCDP模型,我们都建立了估计和推理程序的统计特性(例如弱收敛和渐近力)。我们进行广泛的模拟,以研究拟议估计和推理程序的有限样本性能。我们研究了VCDP模型如何帮助改善DIDI中各种派遣和处置政策的政策评估。
translated by 谷歌翻译
交通速度预测是许多有价值应用程序的关键,由于其各种影响因素,它也是一项具有挑战性的任务。最近的工作试图通过各种混合模型获得更多信息,从而提高了预测准确性。但是,这些方法的空间信息采集方案存在两级分化问题。建模很简单,但包含很少的空间信息,或者建模是完整的,但缺乏灵活性。为了基于确保灵活性引入更多空间信息,本文提出了IRNET(可转让的交叉点重建网络)。首先,本文将相交重建为与相同结构的虚拟交集,从而简化了道路网络的拓扑结构。然后,将空间信息细分为交叉信息和交通流向的序列信息,并通过各种模型获得时空特征。第三,一种自我发项机制用于融合时空特征以进行预测。在与基线的比较实验中,不仅预测效应,而且转移性能具有明显的优势。
translated by 谷歌翻译
物流运营商最近提出了一项技术,可以帮助降低城市货运分销中的交通拥堵和运营成本,最近提出了移动包裹储物柜(MPLS)。鉴于他们能够在整个部署领域搬迁,因此他们具有提高客户可访问性和便利性的潜力。在这项研究中,我们制定了移动包裹储物柜问题(MPLP),这是位置路由问题(LRP)的特殊情况,该案例确定了整天MPL的最佳中途停留位置以及计划相应的交付路线。开发了基于混合Q学习网络的方法(HQM),以解决所得大问题实例的计算复杂性,同时逃脱了本地Optima。此外,HQM与全球和局部搜索机制集成在一起,以解决经典强化学习(RL)方法所面临的探索和剥削困境。我们检查了HQM在不同问题大小(最多200个节点)下的性能,并根据遗传算法(GA)进行了基准测试。我们的结果表明,HQM获得的平均奖励比GA高1.96倍,这表明HQM具有更好的优化能力。最后,我们确定有助于车队规模要求,旅行距离和服务延迟的关键因素。我们的发现概述了MPL的效率主要取决于时间窗口的长度和MPL中断的部署。
translated by 谷歌翻译
A fundamental question in any peer-to-peer ride-sharing system is how to, both effectively and efficiently, meet the request of passengers to balance the supply and demand in real time. On the passenger side, traditional approaches focus on pricing strategies by increasing the probability of users' call to adjust the distribution of demand. However, previous methods do not take into account the impact of changes in strategy on future supply and demand changes, which means drivers are repositioned to different destinations due to passengers' calls, which will affect the driver's income for a period of time in the future. Motivated by this observation, we make an attempt to optimize the distribution of demand to handle this problem by learning the long-term spatio-temporal values as a guideline for pricing strategy. In this study, we propose an offline deep reinforcement learning based method focusing on the demand side to improve the utilization of transportation resources and customer satisfaction. We adopt a spatio-temporal learning method to learn the value of different time and location, then incentivize the ride requests of passengers to adjust the distribution of demand to balance the supply and demand in the system. In particular, we model the problem as a Markov Decision Process (MDP).
translated by 谷歌翻译