最近在优化中应用了动力学系统理论,以证明梯度下降算法避免了所谓的损失函数的严格鞍点。但是,在许多现代机器学习应用中,不满足所需的规律条件。特别是,整流线性单元(RELU)网络就是这种情况。在本文中,我们证明了相关动力系统结果的变体,即中心稳定的歧管定理,其中我们放宽了一些规律性要求。然后,我们验证浅层relu网络适合新框架。在基于针对仿射目标功能测量的浅层relu网络的正方形积分损失的临界点的分类为基础,我们推断出梯度下降避免了大多数鞍点。如果初始化足够好,我们将继续证明与全球最小值的融合,这是由限制损失的明确阈值表示的。
translated by 谷歌翻译
在本文中,我们分析了用Relu,泄漏的Relu以及二次激活的一个隐藏层网络的真实丧失的景观。在所有三种情况下,我们在目标函数所仿射的情况下提供了完整的关键点的分类。特别是,我们表明没有局部最大值,并阐明马鞍点的结构。此外,我们证明了非全球局部最小值只能由“死”recu神经元引起。特别是,它们不会出现在泄漏的Relu或二次激活的情况下。我们的方法是组合性质,并在仔细分析可能发生的不同类型的隐性神经元。
translated by 谷歌翻译
我们研究了二阶算法混合牛顿方法和惯性梯度下降的渐近行为在非凸景观中。我们表明,尽管牛顿行为这些方法,但它们几乎总是逃脱严格的马鞍点。我们还证明了这些方法的超级参数在其定性行为附近关键点的定性行为发挥作用。理论结果由数字插图支持。
translated by 谷歌翻译
在本文中,我们通过任意大量的隐藏层研究了全连接的前馈深度Relu Ann,我们证明了在假设不正常化的概率密度函数下,在训练中具有随机初始化的GD优化方法的风险的融合在考虑的监督学习问题的输入数据的概率分布是分段多项式,假设目标函数(描述输入数据与输出数据之间的关系)是分段多项式,并且在假设风险函数下被认为的监督学习问题至少承认至少一个常规全球最低限度。此外,在浅句的特殊情况下只有一个隐藏的层和一维输入,我们还通过证明对每个LipsChitz连续目标功能的培训来验证这种假设,风险景观中存在全球最小值。最后,在具有Relu激活的深度广域的训练中,我们还研究梯度流(GF)差分方程的解决方案,并且我们证明每个非发散的GF轨迹会聚在临界点的多项式收敛速率(在限制意义上FR \'ECHET子提让性)。我们的数学融合分析造成了来自真实代数几何的工具,例如半代数函数和广义Kurdyka-Lojasiewicz不等式,从功能分析(如Arzel \)Ascoli定理等工具,在来自非本地结构的工具中作为限制FR \'echet子分子的概念,以及具有固定架构的浅印刷ANN的实现功能的事实形成由Petersen等人显示的连续功能集的封闭子集。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
我们表明,在固定级和对称的阳性半明确矩阵上,Riemannian梯度下降算法几乎可以肯定地逃脱了歧管边界上的一些虚假关键点。我们的结果是第一个部分克服低级基质歧管的不完整而不改变香草riemannian梯度下降算法的不完整性。虚假的关键点是一些缺陷的矩阵,仅捕获地面真理的特征成分的一部分。与经典的严格鞍点不同,它们表现出非常奇异的行为。我们表明,使用动力学低级别近似和重新升级的梯度流,可以将某些伪造的临界点转换为参数化域中的经典严格鞍点,从而导致所需的结果。提供数值实验以支持我们的理论发现。
translated by 谷歌翻译
众所周知,具有重新激活函数的完全连接的前馈神经网络可以表示的参数化函数家族恰好是一类有限的分段线性函数。鲜为人知的是,对于Relu神经网络的每个固定架构,参数空间都允许对称的正维空间,因此,在任何给定参数附近的局部功能维度都低于参数维度。在这项工作中,我们仔细地定义了功能维度的概念,表明它在Relu神经网络函数的参数空间中是不均匀的,并继续进行[14]和[5]中的调查 - 何时在功能维度实现其理论时最大。我们还研究了从参数空间到功能空间的实现图的商空间和纤维,提供了断开连接的纤维的示例,功能尺寸为非恒定剂的纤维以及对称组在其上进行非转换的纤维。
translated by 谷歌翻译
本文介绍了梯度下降到全球最低最低限度的新标准。该标准用于表明,当训练任何具有光滑且严格增加激活功能的前馈神经网络时,具有适当初始化的梯度下降将收敛到全局最小值,前提是输入维度大于或等于数据点的数量。先前工作的主要区别在于,网络的宽度可以是固定的数字,而不是作为数据点数量的某些倍数或功率而不现实地生长。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
如今,对人工神经网络(ANN)的培训已成为科学和工业中许多应用的高度相关算法程序。粗略地说,可以将ANN视为仿射线性函数和某些固定非线性函数之间的迭代组成,这些函数通常是一维所谓的激活函数的多维版本。这样的一维激活函数的最流行选择是整流的线性单元(relu)激活函数,该功能将真实的数字映射到其正零件$ \ mathbb {r} \ ni x \ mapsto \ mapsto \ max \ x,x,0 \ {x,0 } \ in \ mathbb {r} $。在本文中,我们提出并分析了此类relu ANN的标准训练程序的修改变体,从某种意义上说,我们建议将负梯度流动动力学限制为ANN参数空间的大型子序列,这是一个严格的$ c^{{ \ infty} $ -SubManifold的整个ANN参数空间似乎比整个ANN参数空间都享有更好的规律性属性整个ANN参数空间。在只有一维ANN层的浅周围的特殊情况下,我们也为每个Lipschitz连续目标函数证明,ANN参数空间的大型子元中的每个梯度流轨迹都具有全球界限。对于具有Lipschitz连续目标函数的整个ANN参数空间上的标准梯度流,即使在仅具有一维ANN层的浅ANN的情况下,也是一个开放的研究问题,可以证明或反驳梯度流轨迹的全局界限。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
在这项工作中,证明了功能$ f $的收敛引理是分析映射的有限组成和最大运算符。引理表明,$ \ delta $ - 定位点附近附近的隔离本地最小点$ x^*$正在收缩到$ x^*$,为$ \ delta \ to 0 $。它是强烈凸出$ c^1 $函数的版本的自然扩展。但是,引理的正确性是微妙的。分析映射对于诱饵是必要的,因为用可区分或$ c^\ infty $映射代替它会导致引理错误。该证明基于{\ l} ojasiewicz的半分析集的分层定理。此证明的扩展显示了$ f $的一组固定点的几何表征。最后,提出了在固定点上的稳定性概念,称为收敛稳定性。它询问,在小数字错误下,合理的收敛优化方法是否在固定点附近开始应最终收敛到同一固定点。仅当目标函数既非滑动和非概念),趋同稳定性的概念在质量上变得无处不在。通过收敛引理,证明了$ F $的收敛稳定性的直观等效条件。这些结果共同提供了一个新的几何观点,可以研究非平滑非凸优化中“何处连接”的问题。
translated by 谷歌翻译
低维歧管假设认为,在许多应用中发现的数据,例如涉及自然图像的数据(大约)位于嵌入高维欧几里得空间中的低维歧管上。在这种情况下,典型的神经网络定义了一个函数,该函数在嵌入空间中以有限数量的向量作为输入。但是,通常需要考虑在训练分布以外的点上评估优化网络。本文考虑了培训数据以$ \ mathbb r^d $的线性子空间分配的情况。我们得出对由神经网络定义的学习函数变化的估计值,沿横向子空间的方向。我们研究了数据歧管的编纂中与网络的深度和噪声相关的潜在正则化效应。由于存在噪声,我们还提出了训练中的其他副作用。
translated by 谷歌翻译
In this paper we prove Gamma-convergence of a nonlocal perimeter of Minkowski type to a local anisotropic perimeter. The nonlocal model describes the regularizing effect of adversarial training in binary classifications. The energy essentially depends on the interaction between two distributions modelling likelihoods for the associated classes. We overcome typical strict regularity assumptions for the distributions by only assuming that they have bounded $BV$ densities. In the natural topology coming from compactness, we prove Gamma-convergence to a weighted perimeter with weight determined by an anisotropic function of the two densities. Despite being local, this sharp interface limit reflects classification stability with respect to adversarial perturbations. We further apply our results to deduce Gamma-convergence of the associated total variations, to study the asymptotics of adversarial training, and to prove Gamma-convergence of graph discretizations for the nonlocal perimeter.
translated by 谷歌翻译
作为理解过度参数模型中梯度下降的隐式偏差的努力的一部分,有几个结果表明,如何将过份术模型上的训练轨迹理解为不同目标上的镜像。这里的主要结果是在称为通勤参数化的概念下对这种现象的表征,该概念涵盖了此设置中的所有先前结果。结果表明,具有任何通勤参数化的梯度流相当于具有相关Legendre函数的连续镜下降。相反,具有任何legendre函数的连续镜下降可以被视为具有相关通勤参数化的梯度流。后一个结果依赖于纳什的嵌入定理。
translated by 谷歌翻译
We generalize the classical universal approximation theorem for neural networks to the case of complex-valued neural networks. Precisely, we consider feedforward networks with a complex activation function $\sigma : \mathbb{C} \to \mathbb{C}$ in which each neuron performs the operation $\mathbb{C}^N \to \mathbb{C}, z \mapsto \sigma(b + w^T z)$ with weights $w \in \mathbb{C}^N$ and a bias $b \in \mathbb{C}$, and with $\sigma$ applied componentwise. We completely characterize those activation functions $\sigma$ for which the associated complex networks have the universal approximation property, meaning that they can uniformly approximate any continuous function on any compact subset of $\mathbb{C}^d$ arbitrarily well. Unlike the classical case of real networks, the set of "good activation functions" which give rise to networks with the universal approximation property differs significantly depending on whether one considers deep networks or shallow networks: For deep networks with at least two hidden layers, the universal approximation property holds as long as $\sigma$ is neither a polynomial, a holomorphic function, or an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if the real part or the imaginary part of $\sigma$ is not a polyharmonic function.
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for improving the generalization of deep neural networks for various settings. However, the underlying working of SAM remains elusive because of various intriguing approximations in the theoretical characterizations. SAM intends to penalize a notion of sharpness of the model but implements a computationally efficient variant; moreover, a third notion of sharpness was used for proving generalization guarantees. The subtle differences in these notions of sharpness can indeed lead to significantly different empirical results. This paper rigorously nails down the exact sharpness notion that SAM regularizes and clarifies the underlying mechanism. We also show that the two steps of approximations in the original motivation of SAM individually lead to inaccurate local conclusions, but their combination accidentally reveals the correct effect, when full-batch gradients are applied. Furthermore, we also prove that the stochastic version of SAM in fact regularizes the third notion of sharpness mentioned above, which is most likely to be the preferred notion for practical performance. The key mechanism behind this intriguing phenomenon is the alignment between the gradient and the top eigenvector of Hessian when SAM is applied.
translated by 谷歌翻译