在对象检测中,边界框回归(BBR)是决定对象定位性能的关键步骤。但是,我们发现BBR的大多数先前的损失功能都有两个主要缺点:(i)$ \ ell_n $ -norm和IOU基于IOU的损失功能都无法效率地描述BBR的目标,这会导致收敛速度缓慢和不准确的回归结果。 。 (ii)大多数损失函数都忽略了BBR中的不平衡问题,即与目标盒有较小重叠的大量锚盒对BBR的优化有最大的影响。为了减轻造成的不利影响,我们进行了彻底的研究,以利用本文中BBR损失的潜力。首先,提出了有关联合(EIOU)损失的有效交集,该交集明确测量了BBR中三个几何因素的差异,即重叠面积,中心点和侧面长度。之后,我们说明有效的示例挖掘(EEM)问题,并提出了焦点损失的回归版本,以使回归过程集中在高质量的锚点上。最后,将上述两个部分组合在一起以获得新的损失函数,即焦点损失。对合成数据集和真实数据集进行了广泛的实验。与其他BBR损失相比,在收敛速度和定位精度上都可以显着优势。
translated by 谷歌翻译
Bounding box regression is the crucial step in object detection. In existing methods, while n-norm loss is widely adopted for bounding box regression, it is not tailored to the evaluation metric, i.e., Intersection over Union (IoU). Recently, IoU loss and generalized IoU (GIoU) loss have been proposed to benefit the IoU metric, but still suffer from the problems of slow convergence and inaccurate regression. In this paper, we propose a Distance-IoU (DIoU) loss by incorporating the normalized distance between the predicted box and the target box, which converges much faster in training than IoU and GIoU losses. Furthermore, this paper summarizes three geometric factors in bounding box regression, i.e., overlap area, central point distance and aspect ratio, based on which a Complete IoU (CIoU) loss is proposed, thereby leading to faster convergence and better performance. By incorporating DIoU and CIoU losses into state-of-the-art object detection algorithms, e.g., YOLO v3, SSD and Faster R-CNN, we achieve notable performance gains in terms of not only IoU metric but also GIoU metric. Moreover, DIoU can be easily adopted into non-maximum suppression (NMS) to act as the criterion, further boosting performance improvement. The source code and trained models are available at https://github.com/Zzh-tju/DIoU.
translated by 谷歌翻译
检测微小的物体是一个非常具有挑战性的问题,因为一个小物体只包含几个像素的大小。我们证明,由于缺乏外观信息,最新的检测器不会对微小物体产生令人满意的结果。我们的主要观察结果是,基于联合(IOU)的相交(例如IOU本身及其扩展)对微小物体的位置偏差非常敏感,并且在基于锚固的检测器中使用时会大大恶化检测性能。为了减轻这一点,我们提出了使用Wasserstein距离进行微小对象检测的新评估度量。具体而言,我们首先将边界框建模为2D高斯分布,然后提出一个新的公制称为标准化的瓦斯汀距离(NWD),以通过相应的高斯分布来计算它们之间的相似性。提出的NWD度量可以轻松地嵌入分配中,非最大抑制作用以及任何基于锚固的检测器的损耗函数,以替换常用的IOU度量。我们在新的数据集上评估了我们的度量,以用于微小对象检测(AI-TOD),其中平均对象大小比现有对象检测数据集小得多。广泛的实验表明,在配备NWD指标时,我们的方法的性能比标准的微调基线高6.7 AP点,并且比最先进的竞争对手高6.0 AP点。代码可在以下网址提供:https://github.com/jwwangchn/nwd。
translated by 谷歌翻译
标签分配在现代对象检测模型中起着重要作用。检测模型可能会通过不同的标签分配策略产生完全不同的性能。对于基于锚的检测模型,锚点及其相应的地面真实边界框之间的IO(与联合的交点)是关键要素,因为正面样品和负样品除以IOU阈值。早期对象探测器仅利用所有训练样本的固定阈值,而最近的检测算法则基于基于IOUS到地面真相框的分布而着重于自适应阈值。在本文中,我们介绍了一种简单的同时有效的方法,可以根据预测的培训状态动态执行标签分配。通过在标签分配中引入预测,选择了更高的地面真相对象的高质量样本作为正样本,这可以减少分类得分和IOU分数之间的差异,并生成更高质量的边界框。我们的方法显示了使用自适应标签分配算法和这些正面样本的下限框损失的检测模型的性能的改进,这表明将更多具有较高质量预测盒的样品选择为阳性。
translated by 谷歌翻译
translated by 谷歌翻译
平均精度(AP)损失最近在密集的对象检测任务上显示出有希望的性能。但是,尚未开发出对AP损失如何影响检测器的深刻了解。在这项工作中,我们重新审视平均精度(AP)损失,并揭示了关键元素是选择排名对的关键元素基于该观察结果,我们提出了两种改善AP损失的策略。其中的第一个是一种新型的自适应成对误差(APE)损失,该损失集中在正面和负样本中的排名对。此外,我们通过使用聚类算法利用归一化排名得分和本地化得分来选择更准确的排名对。在MSCOCO数据集上进行的实验支持我们的分析,并证明了我们提出的方法的优越性与当前分类和排名损失相比。该代码可从https://github.com/xudangliatiger/ape-loss获得。
translated by 谷歌翻译
在现代探测器中,默认使用四变独立回归定位损耗,如平滑 - $ \ ell_1 $丢失。然而,这种损失超薄了,使其与联盟(iou)的最终评估度量,交叉口不一致。直接采用标准IOU也不是不可行的,因为在非重叠盒的情况下的恒定零高原和最小值的非零梯度可能使其不可培养。因此,我们提出了一种解决这些问题的系统方法。首先,我们提出了一个新的公制,延伸的iou(eiou),当两个盒子没有重叠时,它是良好的定义,当重叠时,它是不重叠的并且减少到标准iou。其次,我们介绍了凸化技术(CT)以在EIOU的基础上构建损失,这可以保证梯度最小为零。第三,我们提出了一种稳定的优化技术(SOT),使分数欧盟损失更加稳定,平稳地接近最低。第四,为了充分利用基于EIOO的损失的能力,我们引入了一个相互关联的iou预测头,以进一步提升本地化准确性。通过拟议的贡献,新方法与Reset50 + FPN的备用R-CNN掺入,作为骨干收益率\ TextBF {4.2 Map} Gain on Voc2007和Coco2017上的基准下滑 - $ \ ell_1 $损失,几乎\ textbf {没有培训和推理计算成本}。具体而言,度量标准更长的是,增益越令人显着,在Coco2017上的VOC2007和\ TextBF {5.4 MAP}上越突出,可以在Coco2017上以公式$ AP_ {90} $。
translated by 谷歌翻译
Compared with model architectures, the training process, which is also crucial to the success of detectors, has received relatively less attention in object detection. In this work, we carefully revisit the standard training practice of detectors, and find that the detection performance is often limited by the imbalance during the training process, which generally consists in three levels -sample level, feature level, and objective level. To mitigate the adverse effects caused thereby, we propose Libra R-CNN, a simple but effective framework towards balanced learning for object detection. It integrates three novel components: IoU-balanced sampling, balanced feature pyramid, and balanced L1 loss, respectively for reducing the imbalance at sample, feature, and objective level. Benefitted from the overall balanced design, Libra R-CNN significantly improves the detection performance. Without bells and whistles, it achieves 2.5 points and 2.0 points higher Average Precision (AP) than FPN Faster R-CNN and RetinaNet respectively on MSCOCO. 1
translated by 谷歌翻译
由于基于相交的联盟(IOU)优化维持最终IOU预测度量和损失的一致性,因此它已被广泛用于单级2D对象检测器的回归和分类分支。最近,几种3D对象检测方法采用了基于IOU的优化,并用3D iou直接替换了2D iou。但是,由于复杂的实施和效率低下的向后操作,3D中的这种直接计算非常昂贵。此外,基于3D IOU的优化是优化的,因为它对旋转很敏感,因此可能导致训练不稳定性和检测性能恶化。在本文中,我们提出了一种新型的旋转旋转iou(RDIOU)方法,该方法可以减轻旋转敏感性问题,并在训练阶段与3D IOU相比产生更有效的优化目标。具体而言,我们的RDIOU通过将旋转变量解耦为独立术语,但保留3D iou的几何形状来简化回归参数的复杂相互作用。通过将RDIOU纳入回归和分类分支,鼓励网络学习更精确的边界框,并同时克服分类和回归之间的错位问题。基准Kitti和Waymo开放数据集的广泛实验验证我们的RDIOU方法可以为单阶段3D对象检测带来实质性改进。
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
对象检测是典型的多任务学习应用程序,其同时优化分类和回归。但是,分类损失总是以基于锚的方法的多任务损失主导,妨碍了任务的一致和平衡优化。在本文中,我们发现转移边界盒可以在分类中改变正面和负样本的划分,意思是分类取决于回归。此外,考虑到不同的数据集,优化器和回归损耗功能,我们总结了关于微调损耗重量的三个重要结论。基于上述结论,我们提出了自适应损失重量调整(ALWA)以根据损失的统计特征来解决优化基于锚的方法的不平衡。通过将Alwa纳入以前的最先进的探测器,我们在Pascal VOC和MS Coco上实现了显着的性能增益,即使是L1,Smoothl1和Ciou丢失。代码可在https://github.com/ywx-hub/alwa获得。
translated by 谷歌翻译
物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
现有检测方法通常使用参数化边界框(Bbox)进行建模和检测(水平)对象,并将其他旋转角参数用于旋转对象。我们认为,这种机制在建立有效的旋转检测回归损失方面具有根本的局限性,尤其是对于高精度检测而言,高精度检测(例如0.75)。取而代之的是,我们建议将旋转的对象建模为高斯分布。一个直接的优势是,我们关于两个高斯人之间距离的新回归损失,例如kullback-leibler Divergence(KLD)可以很好地对齐实际检测性能度量标准,这在现有方法中无法很好地解决。此外,两个瓶颈,即边界不连续性和正方形的问题也消失了。我们还提出了一种有效的基于高斯度量的标签分配策略,以进一步提高性能。有趣的是,通过在基于高斯的KLD损失下分析Bbox参数的梯度,我们表明这些参数通过可解释的物理意义进行了动态更新,这有助于解释我们方法的有效性,尤其是对于高精度检测。我们使用量身定制的算法设计将方法从2-D扩展到3-D,以处理标题估计,并在十二个公共数据集(2-D/3-D,空中/文本/脸部图像)上进行了各种基本检测器的实验结果。展示其优越性。
translated by 谷歌翻译
Modern object detectors rely heavily on rectangular bounding boxes, such as anchors, proposals and the final predictions, to represent objects at various recognition stages. The bounding box is convenient to use but provides only a coarse localization of objects and leads to a correspondingly coarse extraction of object features. In this paper, we present RepPoints (representative points), a new finer representation of objects as a set of sample points useful for both localization and recognition. Given ground truth localization and recognition targets for training, RepPoints learn to automatically arrange themselves in a manner that bounds the spatial extent of an object and indicates semantically significant local areas. They furthermore do not require the use of anchors to sample a space of bounding boxes. We show that an anchor-free object detector based on RepPoints can be as effective as the state-of-the-art anchor-based detection methods, with 46.5 AP and 67.4 AP 50 on the COCO test-dev detection benchmark, using ResNet-101 model. Code is available at https://github.com/microsoft/RepPoints.
translated by 谷歌翻译
复杂的水下环境为物体检测带来了新的挑战,例如未平衡的光条件,低对比度,阻塞和水生生物的模仿。在这种情况下,水下相机捕获的物体将变得模糊,并且通用探测器通常会在这些模糊的物体上失败。这项工作旨在从两个角度解决问题:不确定性建模和艰难的例子采矿。我们提出了一个名为Boosting R-CNN的两阶段水下检测器,该检测器包括三个关键组件。首先,提出了一个名为RetinArpn的新区域建议网络,该网络提供了高质量的建议,并考虑了对象和IOU预测,以确定对象事先概率的不确定性。其次,引入了概率推理管道,以结合第一阶段的先验不确定性和第二阶段分类评分,以模拟最终检测分数。最后,我们提出了一种名为Boosting Reweighting的新的硬示例挖掘方法。具体而言,当区域提案网络误认为样品的对象的事先概率时,提高重新加权将在训练过程中增加R-CNN头部样品的分类损失,同时减少具有准确估计的先验的简易样品丢失。因此,可以在第二阶段获得强大的检测头。在推理阶段,R-CNN具有纠正第一阶段的误差以提高性能的能力。在两个水下数据集和两个通用对象检测数据集上进行的全面实验证明了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
航空图像中的微小对象检测(TOD)是具有挑战性的,因为一个小物体只包含几个像素。最先进的对象探测器由于缺乏判别特征的监督而无法为微小对象提供令人满意的结果。我们的主要观察结果是,联合度量(IOU)及其扩展的相交对微小物体的位置偏差非常敏感,这在基于锚固的探测器中使用时会大大恶化标签分配的质量。为了解决这个问题,我们提出了一种新的评估度量标准,称为标准化的Wasserstein距离(NWD)和一个新的基于排名的分配(RKA)策略,以进行微小对象检测。提出的NWD-RKA策略可以轻松地嵌入到各种基于锚的探测器中,以取代标准的基于阈值的检测器,从而大大改善了标签分配并为网络培训提供了足够的监督信息。在四个数据集中测试,NWD-RKA可以始终如一地提高微小的对象检测性能。此外,在空中图像(AI-TOD)数据集中观察到显着的嘈杂标签,我们有动力将其重新标记并释放AI-TOD-V2及其相应的基准。在AI-TOD-V2中,丢失的注释和位置错误问题得到了大大减轻,从而促进了更可靠的培训和验证过程。将NWD-RKA嵌入探测器中,检测性能比AI-TOD-V2上的最先进竞争对手提高了4.3个AP点。数据集,代码和更多可视化可在以下网址提供:https://chasel-tsui.g​​ithub.io/ai/ai-tod-v2/
translated by 谷歌翻译
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve stateof-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS.
translated by 谷歌翻译
无锚的检测器基本上将对象检测作为密集的分类和回归。对于流行的无锚检测器,通常是引入单个预测分支来估计本地化的质量。当我们深入研究分类和质量估计的实践时,会观察到以下不一致之处。首先,对于某些分配了完全不同标签的相邻样品,训练有素的模型将产生相似的分类分数。这违反了训练目标并导致绩效退化。其次,发现检测到具有较高信心的边界框与相应的地面真相具有较小的重叠。准确的局部边界框将被非最大抑制(NMS)过程中的精确量抑制。为了解决不一致问题,提出了动态平滑标签分配(DSLA)方法。基于最初在FCO中开发的中心概念,提出了平稳的分配策略。在[0,1]中将标签平滑至连续值,以在正样品和负样品之间稳定过渡。联合(IOU)在训练过程中会动态预测,并与平滑标签结合。分配动态平滑标签以监督分类分支。在这样的监督下,质量估计分支自然合并为分类分支,这简化了无锚探测器的体系结构。全面的实验是在MS Coco基准上进行的。已经证明,DSLA可以通过减轻上述无锚固探测器的不一致来显着提高检测准确性。我们的代码在https://github.com/yonghaohe/dsla上发布。
translated by 谷歌翻译
样本分配在现代对象检测方法中起着重要的作用。但是,大多数现有的方法都依靠手动设计来分配正 /负样本,这些样本并未明确建立样本分配和对象检测性能之间的关系。在这项工作中,我们提出了一种基于高参数搜索的新型动态样本分配方案。我们首先将分配给每个地面真理的正样本的数量定义为超参数,并采用替代优化算法来得出最佳选择。然后,我们设计一个动态的样本分配过程,以动态选择每个训练迭代中的最佳阳性数量。实验表明,所得的HPS-DET在不同对象检测基线的基线上带来了改善的性能。此外,我们分析了在不同数据集之间和不同骨架之间转移的高参数可重复使用性,以进行对象检测,这表现出我们方法的优势和多功能性。
translated by 谷歌翻译
尽管近期长尾对象检测成功,但几乎所有长尾对象探测器都是基于两级范式开发的。在实践中,一阶段探测器在行业中更为普遍,因为它们具有简单而快速的管道,易于部署。然而,在长尾情景中,到目前为止,这项工作尚未探讨。在本文中,我们调查了在这种情况下是否可以良好的单级探测器表现良好。我们发现预防一步检测器实现优异性能的主要障碍是:在长尾数据分布下,类别遭受不同程度的正负不平衡问题。传统的焦点损失与所有类别的调制因子相同的调节因子平衡,因此未能处理长尾问题。为了解决这个问题,我们提出了根据其不平衡程度独立地重新平衡不同类别的正面和负样本的损失贡献的均等的联络损失(EFL)。具体而言,EFL采用类别相关调制因子,可以通过不同类别的培训状态来动态调整。对挑战性的LVIS V1基准进行的广泛实验表明了我们提出的方法的有效性。通过端到端培训管道,EF​​L在整体AP方面实现了29.2%,并对稀有类别进行了显着的性能改进,超越了所有现有的最先进的方法。代码可在https://github.com/modeltc/eod上获得。
translated by 谷歌翻译