Semantic segmentation assigns a class label to each image pixel. This dense prediction problem requires large amounts of manually annotated data, which is often unavailable. Few-shot learning aims to learn the pattern of a new category with only a few annotated examples. In this paper, we formulate the few-shot semantic segmentation problem from 1-way (class) to N-way (classes). Inspired by few-shot classification, we propose a generalized framework for few-shot semantic segmentation with an alternative training scheme. The framework is based on prototype learning and metric learning. Our approach outperforms the baselines by a large margin and shows comparable performance for 1-way few-shot semantic segmentation on PASCAL VOC 2012 dataset.
translated by 谷歌翻译
Few-shot semantic segmentation aims to learn to segment new object classes with only a few annotated examples, which has a wide range of real-world applications. Most existing methods either focus on the restrictive setting of one-way few-shot segmentation or suffer from incomplete coverage of object regions. In this paper, we propose a novel few-shot semantic segmentation framework based on the prototype representation. Our key idea is to decompose the holistic class representation into a set of part-aware prototypes, capable of capturing diverse and fine-grained object features. In addition, we propose to leverage unlabeled data to enrich our part-aware prototypes, resulting in better modeling of intra-class variations of semantic objects. We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes based on labeled and unlabeled images. Extensive experimental evaluations on two benchmarks show that our method outperforms the prior art with a sizable margin.
translated by 谷歌翻译
Despite the great progress made by deep CNNs in image semantic segmentation, they typically require a large number of densely-annotated images for training and are difficult to generalize to unseen object categories. Few-shot segmentation has thus been developed to learn to perform segmentation from only a few annotated examples. In this paper, we tackle the challenging few-shot segmentation problem from a metric learning perspective and present PANet, a novel prototype alignment network to better utilize the information of the support set. Our PANet learns classspecific prototype representations from a few support images within an embedding space and then performs segmentation over the query images through matching each pixel to the learned prototypes. With non-parametric metric learning, PANet offers high-quality prototypes that are representative for each semantic class and meanwhile discriminative for different classes. Moreover, PANet introduces a prototype alignment regularization between support and query. With this, PANet fully exploits knowledge from the support and provides better generalization on few-shot segmentation. Significantly, our model achieves the mIoU score of 48.1% and 55.7% on PASCAL-5 i for 1-shot and 5-shot settings respectively, surpassing the state-of-the-art method by 1.8% and 8.6%.
translated by 谷歌翻译
在视觉识别任务中,很少的学习需要在很少的支持示例中学习对象类别的能力。鉴于深度学习的发展,它的重新流行主要是图像分类。这项工作着重于几片语义细分,这仍然是一个未开发的领域。最近的一些进步通常仅限于单级少量分段。在本文中,我们首先介绍了一个新颖的多通道(类)编码和解码体系结构,该体系结构有效地将多尺度查询信息和多类支持信息融合到一个查询支持嵌入中。多级分割直接在此嵌入后解码。为了获得更好的特征融合,在体系结构中提出了多层注意机制,其中包括对支持功能调制的关注和多尺度组合的注意力。最后,为了增强嵌入式空间学习,引入了一个额外的像素度量学习模块,并在输入图像的像素级嵌入式上提出了三重损失。对标准基准Pascal-5i和Coco-20i进行的广泛实验显示了我们方法对最新技术的明显好处
translated by 谷歌翻译
很少有语义细分旨在识别一个看不见类别的对象区域,只有几个带注释的示例作为监督。几次分割的关键是在支持图像和查询图像之间建立牢固的语义关系,并防止过度拟合。在本文中,我们提出了一个有效的多相似性超关联网络(MSHNET),以解决几个射击语义分割问题。在MSHNET中,我们提出了一种新的生成原型相似性(GPS),与余弦相似性可以在支持图像和查询图像之间建立牢固的语义关系。基于全局特征的本地生成的原型相似性在逻辑上与基于本地特征的全局余弦相似性互补,并且可以通过同时使用两个相似性来更全面地表达查询图像和受支持图像之间的关系。此外,我们提出了MSHNET中的对称合并块(SMB),以有效合并多层,多弹射和多相似性超相关特征。 MSHNET是基于相似性而不是特定类别特征而构建的,这些特征可以实现更一般的统一性并有效地减少过度拟合。在两个基准的语义分割数据集Pascal-5i和Coco-20i上,MSHNET在1次和5次语义分段任务上实现了新的最先进的表演。
translated by 谷歌翻译
几次拍摄的语义分割解决了学习任务,其中只有几个具有地面真理像素级标签的图像可用于新颖的感兴趣的景点。通常需要将大量数据(即基类)收集具有这样的地面真理信息,然后是元学习策略来解决上述学习任务。当在训练和测试期间只能观察到图像级语义标签时,它被认为是弱监督少量语义细分的更具挑战性的任务。为了解决这个问题,我们提出了一种新的元学习框架,其预测来自有限量的数据和它们的语义标签的伪像素级分段掩模。更重要的是,我们的学习方案进一步利用了具有分段保证的查询图像输入的产生的像素级信息。因此,我们提出的学习模型可以被视为像素级元学习者。通过对基准数据集的广泛实验,我们表明我们的模型在完全监督的环境下实现了令人满意的性能,但在弱势监督的环境下对最先进的方法进行了有利的方法。
translated by 谷歌翻译
培训语义分割模型需要大量的精细注释数据,使得很难快速适应不满足这种情况的新型类。很少拍摄的分割(FS-SEG)用许多约束来解决这个问题。在本文中,我们介绍了一种新的基准,称为广义的少量语义分割(GFS-SEG),分析了同时分割了具有很少的例子和基本类别的新型类别的泛化能力。第一研究表明,以前的代表性最先进的FS-SEG方法在GFS-SEG中缺乏,并且性能差异主要来自FS-SEG的约束设置。为了制作GFS-SEG易旧的,我们设置了GFS-SEG基线,可以在原始模型上实现不良性能的体现性能。因此,由于上下文对于语义分割是必不可少的,我们提出了显着提高性能的上下文感知原型学习(CAPL)1)利用支持样本的共同发生,以及2)将上下文信息动态地丰富到分类器,对每个查询映像的内容进行调节。两项贡献都是通过实验证明具有实际实际优点的贡献。对Pascal-VOC和Coco的广泛实验表现出CAPL的有效性,CAPL通过实现竞争性能来概括为FS-SEG。代码将公开可用。
translated by 谷歌翻译
几次拍摄的语义分割旨在将新颖的类对象分段为仅具有少数标记的支持图像。大多数高级解决方案利用度量学习框架,通过将每个查询功能与学习的类特定的原型匹配来执行分段。然而,由于特征比较不完整,该框架遭受了偏见的分类。为了解决这个问题,我们通过引入类别特定的和类别不可知的原型来提出自适应原型表示,从而构建与查询功能学习语义对齐的完整样本对。互补特征学习方式有效地丰富了特征比较,并有助于在几次拍摄设置中产生一个非偏见的分段模型。它用双分支端到端网络(\即,特定于类分支和类别不可知分支)实现,它生成原型,然后组合查询特征以执行比较。此外,所提出的类别无神不可话的分支简单而且有效。在实践中,它可以自适应地为查询图像生成多种类别 - 不可知的原型,并以自我对比方式学习特征对齐。广泛的Pascal-5 $ ^ i $和Coco-20 $ ^ i $展示了我们方法的优越性。在不牺牲推理效率的费用中,我们的模型实现了最先进的,导致1-Shot和5-Shot Settings进行语义分割。
translated by 谷歌翻译
很少有分段旨在学习一个细分模型,该模型可以推广到只有几个培训图像的新课程。在本文中,我们提出了一个交叉引用和局部全球条件网络(CRCNET),以进行几次分割。与以前仅预测查询图像掩码的作品不同,我们提出的模型同时对支持图像和查询图像进行了预测。我们的网络可以更好地在两个图像中使用交叉引用机制找到同时出现的对象,从而有助于少量分割任务。为了进一步改善功能比较,我们开发了一个局部全球条件模块,以捕获全球和本地关系。我们还开发了一个掩模修补模块,以重新完善前景区域的预测。Pascal VOC 2012,MS Coco和FSS-1000数据集的实验表明,我们的网络实现了新的最新性能。
translated by 谷歌翻译
我们解决了几次拍摄语义分割(FSS)的问题,该问题旨在通过一些带有一些注释的样本分段为目标图像中的新型类对象。尽管通过结合基于原型的公制学习来进行最近的进步,但由于其特征表示差,现有方法仍然显示出在极端内部对象变化和语义相似的类别对象下的有限性能。为了解决这个问题,我们提出了一种针对FSS任务定制的双重原型对比学习方法,以有效地捕获代表性的语义。主要思想是通过增加阶级距离来鼓励原型更差异,同时减少了原型特征空间中的课堂距离。为此,我们首先向类别特定的对比丢失丢失具有动态原型字典,该字典字典存储在训练期间的类感知原型,从而实现相同的类原型和不同的类原型是不同的。此外,我们通过压缩每集内语义类的特征分布来提高类别无话的对比损失,以提高未经看不见的类别的概念能力。我们表明,所提出的双重原型对比学习方法优于Pascal-5i和Coco-20i数据集的最先进的FSS方法。该代码可用于:https://github.com/kwonjunn01/dpcl1。
translated by 谷歌翻译
很少有分割的目的是仅给出少数标记的样品,旨在细分看不见的级对象。原型学习,支持功能通过平均全局和局部对象信息产生单个原型,在FSS中已广泛使用。但是,仅利用原型矢量可能不足以代表所有训练数据的功能。为了提取丰富的特征并做出更精确的预测,我们提出了一个多相似性和注意力网络(MSANET),包括两个新型模块,一个多相似性模块和一个注意模块。多相似模块利用支持图像和查询图像的多个特征图来估计准确的语义关系。注意模块指示网络专注于相关的信息。该网络在标准FSS数据集,Pascal-5i 1-Shot,Pascal-5i 5-Shot,Coco-20i 1-Shot和Coco-20i 5-Shot上进行了测试。具有RESNET-101骨架的MSANET可在所有4基准测试数据集中达到最先进的性能,而平均交叉点(MIOU)为69.13%,73.99%,51.09%,56.80%。代码可在https://github.com/aivresearch/msanet上获得
translated by 谷歌翻译
Recently, due to the increasing requirements of medical imaging applications and the professional requirements of annotating medical images, few-shot learning has gained increasing attention in the medical image semantic segmentation field. To perform segmentation with limited number of labeled medical images, most existing studies use Proto-typical Networks (PN) and have obtained compelling success. However, these approaches overlook the query image features extracted from the proposed representation network, failing to preserving the spatial connection between query and support images. In this paper, we propose a novel self-supervised few-shot medical image segmentation network and introduce a novel Cycle-Resemblance Attention (CRA) module to fully leverage the pixel-wise relation between query and support medical images. Notably, we first line up multiple attention blocks to refine more abundant relation information. Then, we present CRAPNet by integrating the CRA module with a classic prototype network, where pixel-wise relations between query and support features are well recaptured for segmentation. Extensive experiments on two different medical image datasets, e.g., abdomen MRI and abdomen CT, demonstrate the superiority of our model over existing state-of-the-art methods.
translated by 谷歌翻译
Despite the remarkable success of existing methods for few-shot segmentation, there remain two crucial challenges. First, the feature learning for novel classes is suppressed during the training on base classes in that the novel classes are always treated as background. Thus, the semantics of novel classes are not well learned. Second, most of existing methods fail to consider the underlying semantic gap between the support and the query resulting from the representative bias by the scarce support samples. To circumvent these two challenges, we propose to activate the discriminability of novel classes explicitly in both the feature encoding stage and the prediction stage for segmentation. In the feature encoding stage, we design the Semantic-Preserving Feature Learning module (SPFL) to first exploit and then retain the latent semantics contained in the whole input image, especially those in the background that belong to novel classes. In the prediction stage for segmentation, we learn an Self-Refined Online Foreground-Background classifier (SROFB), which is able to refine itself using the high-confidence pixels of query image to facilitate its adaptation to the query image and bridge the support-query semantic gap. Extensive experiments on PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrates the advantages of these two novel designs both quantitatively and qualitatively.
translated by 谷歌翻译
对少量语义分割(FSS)的研究引起了极大的关注,目的是在查询图像中仅给出目标类别的少数注释的支持图像。这项具有挑战性的任务的关键是通过利用查询和支持图像之间的细粒度相关性来充分利用支持图像中的信息。但是,大多数现有方法要么将支持信息压缩为几个班级原型,要么在像素级别上使用的部分支持信息(例如,唯一的前景),从而导致不可忽略的信息损失。在本文中,我们提出了密集的像素,互源和支持的注意力加权面膜聚合(DCAMA),其中前景和背景支持信息都是通过配对查询和支持特征之间的多级像素的相关性通过多级像素的相关性充分利用的。 DCAMA在变压器体系结构中以缩放点产生的关注实现,将每个查询像素视为令牌,计算其与所有支持像素的相似之处,并预测其分割标签是所有支持像素标签的添加剂聚集 - 相似之处。基于DCAMA的唯一公式,我们进一步提出了对N-shot分割的有效有效的一通推断,其中所有支持图像的像素立即为掩模聚集收集。实验表明,我们的DCAMA在Pascal-5i,Coco-20i和FSS-1000的标准FSS基准上显着提高了最先进的状态以前的最佳记录。烧烤研究还验证了设计dcama。
translated by 谷歌翻译
就像其他少量学习问题一样,很少拍摄的细分旨在最大限度地减少手动注释的需求,这在分割任务中特别昂贵。即使少量拍摄设置降低了新型测试类的这种成本,仍然需要注释培训数据。为了减轻这种需求,我们提出了一种自我监督的培训方法,用于学习几次射门分割模型。我们首先使用无监督的显着性估计来获得图像上的伪掩码。然后,我们将在不同的伪掩模的不同分割和增强图像的不同分裂上培训一个简单的原型模型。我们广泛的实验表明,该方法达到了有希望的结果,突出了自我监督培训的潜力。据我们所知,这是第一个解决自然图像上无监督的少量分割问题的第一项工作。
translated by 谷歌翻译
深度学习在计算机视觉方面取得了巨大的成功,而由于数据注释的稀缺性,医疗图像细分(MIS)仍然是一个挑战。几次分割的元学习技术(meta-fs)已被广泛用于应对这一挑战,而它们忽略了查询图像和支持集之间可能的分配变化。相比之下,经验丰富的临床医生可以通过从查询图像中借用信息,然后相应地对其(她)先前的认知模型进行微调或校准。在此灵感的启发下,我们提出了一种Q-NET,这是一种质疑的Meta-FSS方法,它在精神上模仿了专家临床医生的学习机制。我们基于ADNET构建Q-NET,这是一种最近提出的异常检测启发方法。具体而言,我们将两个查询信息的计算模块添加到ADNET中,即一个查询信息的阈值适应模块和一个查询信息的原型细化模块。将它们与特征提取模块的双路扩展相结合,Q-NET在两个广泛使用的数据集上实现了最先进的性能,分别由腹部MR图像和心脏MR图像组成。我们的作品通过利用查询信息来改善元FSS技术的新颖方法。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
Few-shot segmentation aims to devise a generalizing model that segments query images from unseen classes during training with the guidance of a few support images whose class tally with the class of the query. There exist two domain-specific problems mentioned in the previous works, namely spatial inconsistency and bias towards seen classes. Taking the former problem into account, our method compares the support feature map with the query feature map at multi scales to become scale-agnostic. As a solution to the latter problem, a supervised model, called as base learner, is trained on available classes to accurately identify pixels belonging to seen classes. Hence, subsequent meta learner has a chance to discard areas belonging to seen classes with the help of an ensemble learning model that coordinates meta learner with the base learner. We simultaneously address these two vital problems for the first time and achieve state-of-the-art performances on both PASCAL-5i and COCO-20i datasets.
translated by 谷歌翻译
深度学习极大地提高了语义细分的性能,但是,它的成功依赖于大量注释的培训数据的可用性。因此,许多努力致力于域自适应语义分割,重点是将语义知识从标记的源域转移到未标记的目标域。现有的自我训练方法通常需要多轮训练,而基于对抗训练的另一个流行框架已知对超参数敏感。在本文中,我们提出了一个易于训练的框架,该框架学习了域自适应语义分割的域不变原型。特别是,我们表明域的适应性与很少的学习共享一个共同的角色,因为两者都旨在识别一些从大量可见数据中学到的知识的看不见的数据。因此,我们提出了一个统一的框架,用于域适应和很少的学习。核心思想是使用从几个镜头注释的目标图像中提取的类原型来对源图像和目标图像的像素进行分类。我们的方法仅涉及一个阶段训练,不需要对大规模的未经通知的目标图像进行培训。此外,我们的方法可以扩展到域适应性和几乎没有射击学习的变体。关于适应GTA5到CITYSCAPES和合成景观的实验表明,我们的方法实现了对最先进的竞争性能。
translated by 谷歌翻译
少量对象检测(FSOD)旨在仅使用几个例子来检测对象。如何将最先进的对象探测器适应几个拍摄域保持挑战性。对象提案是现代物体探测器中的关键成分。然而,使用现有方法对于几张拍摄类生成的提案质量远远差,而不是许多拍摄类,例如,由于错误分类或不准确的空间位置而导致的少量拍摄类丢失的框。为了解决嘈杂的提案问题,我们通过联合优化几次提案生成和细粒度的少量提案分类,提出了一种新的Meta学习的FSOD模型。为了提高几张拍摄类的提议生成,我们建议学习基于轻量级的公制学习的原型匹配网络,而不是传统的简单线性对象/非目标分类器,例如,在RPN中使用。我们具有特征融合网络的非线性分类器可以提高鉴别性原型匹配和少拍摄类的提案回忆。为了提高细粒度的少量提案分类,我们提出了一种新的细节特征对准方法,以解决嘈杂的提案和少量拍摄类之间的空间未对准,从而提高了几次对象检测的性能。同时,我们学习一个单独的R-CNN检测头,用于多射击基础类,并表现出维护基础课程知识的强大性能。我们的模型在大多数射击和指标上实现了多个FSOD基准的最先进的性能。
translated by 谷歌翻译