从点云数据进行分割至关重要,例如遥感,移动机器人或自动驾驶汽车。但是,由3D范围传感器捕获的点云通常是稀疏且非结构化的,具有挑战性的有效分割。在本文中,我们提出了一个快速解决方案,以对云实例进行分割,并具有较小的计算需求。为此,我们提出了一种新颖的快速欧几里得聚类(FEC)算法,该算法在现有作品中使用的聚类方案上应用了一个方案。我们的方法在概念上是简单,易于实现的(C ++中的40行),并且在产生高质量的结果的同时,针对经典分割方法实现了两个大小。
translated by 谷歌翻译
Paris-Carla-3d是由移动激光器和相机系统构建的几个浓彩色点云的数据集。数据由两组具有来自开源Carla模拟器(700百万分)的合成数据和在巴黎市中获取的真实数据(6000万分),因此Paris-Carla-3d的名称。此数据集的一个优点是在开源Carla模拟器中模拟了相同的LIDAR和相机平台,因为用于生产真实数据的开源Carla Simulator。此外,使用Carla的语义标记的手动注释在真实数据上执行,允许将转移方法从合成到实际数据进行测试。该数据集的目的是提供一个具有挑战性的数据集,以评估和改进户外环境3D映射的困难视觉任务的方法:语义分段,实例分段和场景完成。对于每项任务,我们描述了评估协议以及建立基线的实验。
translated by 谷歌翻译
Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.
translated by 谷歌翻译
特征提取和匹配是许多计算机视觉任务的基本部分,例如2D或3D对象检测,识别和注册。众所周知,2D功能提取和匹配已经取得了巨大的成功。不幸的是,在3D领域,由于描述性和效率低下,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决此限制,我们提出了一种新颖的3D特征表示方法:3D激光点云的线性关键点表示,称为link3d。 Link3D的新颖性在于它完全考虑了LiDar Point Cloud的特征(例如稀疏性,场景的复杂性),并用其强大的邻居键盘来表示当前关键点,从而对当前关键点的描述提供了强烈的约束。提出的链接3D已在两个公共数据集(即Kitti,Steven VLP16)上进行了评估,实验结果表明,我们的方法在匹配性能方面的最先进表现都大大优于最先进的方法。更重要的是,Link3D显示出出色的实时性能(基于LIDAR的频率10 Hz)。 Link3D平均仅需32毫秒即可从64射线激光束收集的点云中提取功能,并且仅需大约8毫秒即可匹配两次LIDAR扫描,当时用Intel Core i7 @2.2 GHz处理器执行笔记本。此外,我们的方法可以广泛扩展到各种3D视觉应用。在本文中,我们已将Link3D应用于3D注册,LiDAR ODOMETIRE和放置识别任务,并与最先进的方法相比实现了竞争成果。
translated by 谷歌翻译
准确的轨道位置是铁路支持驱动系统的重要组成部分,用于安全监控。激光雷达可以获得携带铁路环境的3D信息的点云,特别是在黑暗和可怕的天气条件下。在本文中,提出了一种基于3D点云的实时轨识别方法来解决挑战,如无序,不均匀的密度和大量点云的挑战。首先呈现Voxel Down-采样方法,用于铁路点云的密度平衡,并且金字塔分区旨在将3D扫描区域划分为具有不同卷的体素。然后,开发了一个特征编码模块以找到最近的邻点并聚合它们的局部几何特征。最后,提出了一种多尺度神经网络以产生每个体素和轨道位置的预测结果。该实验是在铁路的3D点云数据的9个序列下进行的。结果表明,该方法在检测直,弯曲和其他复杂的拓扑轨道方面具有良好的性能。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
本文提供了来自RGBD图像和LIDAR点云的3D数据平面分割的EVOPS数据集。我们已经设计了两种注释方法(RGBD和LIDAR)在著名和广泛使用的数据集上进行SLAM评估,我们提供了一套完整的基准测试工具,包括点,飞机和细分指标。数据包括由高质量分段平面组成的不同选定场景上的10K RGBD和7K LIDAR帧的总数。该实验报告了在我们的注释数据上进行RGBD平面分割的SOTA方法的质量。我们还为LIDAR点云中的平面分割提供了可学习的基线。所有标记的数据和基准工具均已在https://evops.netlify.app/上公开提供。
translated by 谷歌翻译
从3D点云中对可遍历区域和感兴趣的对象的感知是自主导航中的关键任务之一。一辆地面车辆需要寻找可以通过车轮探索的可遍历的地形。然后,为了做出安全的导航决定,必须跟踪位于这些地形上的物体的分割。但是,过度分割和分割不足可能会对此类导航决策产生负面影响。为此,我们提出了旅行,该行程使用3D点云的图表表示可遍历的地面检测和对象聚类。为了将可穿越的接地段分割,将点云编码为图形结构,即三个格里德字段,该场将每个三个格里德视为节点。然后,通过检查连接节点的边缘的局部凸度和凹度来搜索和重新定义可遍历的区域。另一方面,我们的地上对象分割通过表示球形预测空间中的一组水平相邻的3D点作为节点和节点之间的垂直/水平关系,以使用图形结构。充分利用节点边缘结构,上面的分割可确保实时操作并减轻过度分割。通过使用模拟,城市场景和我们自己的数据集的实验,我们已经证明,根据常规指标,我们提出的遍历地面分割算法优于其他最新方法,并且我们新提出的评估指标对于评估是有意义的地上细分。我们将在https://github.com/url-kaist/travel上向公开提供代码和自己的数据集。
translated by 谷歌翻译
视频分析的图像分割在不同的研究领域起着重要作用,例如智能城市,医疗保健,计算机视觉和地球科学以及遥感应用。在这方面,最近致力于发展新的细分策略;最新的杰出成就之一是Panoptic细分。后者是由语义和实例分割的融合引起的。明确地,目前正在研究Panoptic细分,以帮助获得更多对视频监控,人群计数,自主驾驶,医学图像分析的图像场景的更细致的知识,以及一般对场景更深入的了解。为此,我们介绍了本文的首次全面审查现有的Panoptic分段方法,以获得作者的知识。因此,基于所采用的算法,应用场景和主要目标的性质,执行现有的Panoptic技术的明确定义分类。此外,讨论了使用伪标签注释新数据集的Panoptic分割。继续前进,进行消融研究,以了解不同观点的Panoptic方法。此外,讨论了适合于Panoptic分割的评估度量,并提供了现有解决方案性能的比较,以告知最先进的并识别其局限性和优势。最后,目前对主题技术面临的挑战和吸引不久的将来吸引相当兴趣的未来趋势,可以成为即将到来的研究研究的起点。提供代码的文件可用于:https://github.com/elharroussomar/awesome-panoptic-egation
translated by 谷歌翻译
用于LIDAR点云的快速准确的Panoptic分割系统对于自主驾驶车辆来了解周围物体和场景至关重要。现有方法通常依赖于提案或聚类到分段前景实例。结果,他们努力实现实时性能。在本文中,我们提出了一种用于LIDAR点云的新型实时端到端Panoptic分段网络,称为CPSEG。特别地,CPSEG包括共享编码器,双解码器,任务感知注意模块(TAM)和无簇实例分段头。 TAM旨在强制执行这两个解码器以学习用于语义和实例嵌入的丰富的任务感知功能。此外,CPSEG包含一个新的无簇实例分割头,以根据学习嵌入的嵌入动态占据前景点。然后,它通过找到具有成对嵌入比较的连接的柱子来获取实例标签。因此,将传统的基于提议的或基于聚类的实例分段转换为对成对嵌入比较矩阵的二进制分段问题。为了帮助网络回归实例嵌入,提出了一种快速和确定的深度完成算法,以实时计算每个点云的表面法线。该方法在两个大型自主驾驶数据集中基准测试,即Semantickitti和Nuscenes。值得注意的是,广泛的实验结果表明,CPSEG在两个数据集的实时方法中实现了最先进的结果。
translated by 谷歌翻译
我们提出了一种基于动态卷积的3D点云的实例分割方法。这使其能够在推断时适应变化的功能和对象尺度。这样做避免了一些自下而上的方法的陷阱,包括对超参数调整和启发式后处理管道的依赖,以弥补物体大小的不可避免的可变性,即使在单个场景中也是如此。通过收集具有相同语义类别并为几何质心进行仔细投票的均匀点,网络的表示能力大大提高了。然后通过几个简单的卷积层解码实例,其中参数是在输入上生成的。所提出的方法是无建议的,而是利用适应每个实例的空间和语义特征的卷积过程。建立在瓶颈层上的轻重量变压器使模型可以捕获远程依赖性,并具有有限的计算开销。结果是一种简单,高效且健壮的方法,可以在各种数据集上产生强大的性能:ScannETV2,S3DIS和Partnet。基于体素和点的体系结构的一致改进意味着提出的方法的有效性。代码可在以下网址找到:https://git.io/dyco3d
translated by 谷歌翻译
了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
本文首先提出了一个有效的3D点云学习架构,名为PWCLO-NET的LIDAR ODOMORY。在该架构中,提出了3D点云的投影感知表示来将原始的3D点云组织成有序数据表单以实现效率。 LIDAR ODOMOMERY任务的金字塔,翘曲和成本量(PWC)结构是为估计和优化在分层和高效的粗良好方法中的姿势。建立一个投影感知的细心成本卷,以直接关联两个离散点云并获得嵌入运动模式。然后,提出了一种可训练的嵌入掩模来称量局部运动模式以回归整体姿势和过滤异常值点。可训练的姿势经线细化模块迭代地与嵌入式掩码进行分层优化,使姿势估计对异常值更加强大。整个架构是全能优化的端到端,实现成本和掩码的自适应学习,并且涉及点云采样和分组的所有操作都是通过投影感知的3D特征学习方法加速。在Kitti Ocomatry DataSet上证明了我们的激光乐队内径架构的卓越性能和有效性。我们的方法优于基于学习的所有基于学习的方法,甚至基于几何的方法,在大多数基于Kitti Odomatry数据集的序列上具有映射优化的遗传。
translated by 谷歌翻译
强大而准确的本地化是移动自主系统的基本要求。类似杆状的物体,例如交通标志,杆子和灯,由于其局部独特性和长期稳定性,经常使用地标在城市环境中定位。在本文中,我们基于在线运行并且几乎没有计算需求的几何特征,提出了一种新颖,准确,快速的杆提取方法。我们的方法直接对3D LIDAR扫描生成的范围图像执行所有计算,该图像避免了显式处理3D点云,并为每次扫描启用快速的极点提取。我们进一步使用提取的杆子作为伪标签来训练深层神经网络,以基于图像的极点分割。我们测试了我们的几何和基于学习的极点提取方法,用于在不同的扫描仪,路线和季节性变化的不同数据集上定位。实验结果表明,我们的方法表现优于其他最先进的方法。此外,通过从多个数据集提取的伪极标签增强,我们基于学习的方法可以跨不同的数据集运行,并且与基于几何的方法相比,可以实现更好的本地化结果。我们向公众发布了杆数据集,以评估杆的性能以及我们的方法的实施。
translated by 谷歌翻译
随着商业深度传感器和3D扫描仪的最近可用性和可承受能力,越来越多的3D(即RGBD,点云)数据集已被宣传以促进3D计算机视觉的研究。但是,现有的数据集覆盖相对较小的区域或具有有限的语义注释。对城市规模3D场景的细粒度理解仍处于起步阶段。在本文中,我们介绍了Sensaturban,一个城市规模的UAV摄影测量点云数据集,包括从三个英国城市收集的近30亿积分,占地7.6公里^ 2。 DataSet中的每个点已标记为具有细粒度的语义注释,导致数据集是上一个现有最大摄影测量点云数据集的三倍的三倍。除了诸如道路和植被等诸如道路和植被的常见类别之外,我们的数据集还包含包括轨道,桥梁和河流的城市水平类别。基于此数据集,我们进一步构建了基准,以评估最先进的分段算法的性能。特别是,我们提供了全面的分析,确定了限制城市规模点云理解的几个关键挑战。数据集可在http://point-cloud-analysis.cs.ox.ac.uk中获取。
translated by 谷歌翻译
现有的最新3D点云实例分割方法依赖于基于分组的方法,该方法指向获得对象实例。尽管产生准确的分割结果方面有所改善,但这些方法缺乏可扩展性,通常需要将大量输入分为多个部分。为了处理数百万点的场景,现有的最快方法软组\ cite {vu2022222222222222222222222222222222222222ggroup}需要数十秒钟,这是满意的。我们的发现是,$ k $ neart的邻居($ k $ -nn)是分组的先决条件,是计算瓶颈。这种瓶颈严重使现场的推理时间恶化了很多。本文提出了软组++来解决此计算瓶颈,并进一步优化了整个网络的推理速度。 SoftGroup ++建立在软组上,这在三个重要方面有所不同:(1)执行OCTREE $ K $ -NN而不是Vanilla $ k $ -nn,以将时间复杂性从$ \ Mathcal {o}(n^2)缩短到$ \ Mathcal {o}(n \ log n)$,(2)执行金字塔缩放,适应性下降样本骨干输出以减少$ k $ -nn和分组的搜索空间,并且(3)执行后期的Devoxelization,延迟了Voxels的转换指向模型的结束,以使中间组件以低计算成本运行。在各种室内和室外数据集上进行了广泛的实验,证明了拟议的软组++的功效。值得注意的是,SoftGroup ++在一个前方的情况下通过单个前方进行了大量的场景,而无需将输入分为多个部分,从而丰富了上下文信息。特别是,SoftGroup ++达到2.4点AP $ _ {50} $改进,而$ 6 \ $ 6 \ times $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。代码和训练有素的模型将公开可用。
translated by 谷歌翻译
旋转激光雷达数据对于3D感知任务普遍存在,但尚未研究其圆柱形图像形式。传统方法将扫描视为点云,并且它们依赖于昂贵的欧几里德3D最近邻居搜索数据关联或依赖于投影范围图像以进行进一步处理。我们重新审视LIDAR扫描形成,并呈现来自原始扫描数据的圆柱形范围图像表示,配备有效校准的球形投射模型。通过我们的配方,我们1)收集一个LIDAR数据的大型数据集,包括室内和室外序列,伴随着伪接地的真理姿势;2)评估综合性和现实世界转型的序列上的投影和常规登记方法;3)将最先进的RGB-D算法转移到LIDAR,其运行高达180 Hz的注册和150 Hz以进行密集的重建。数据集和工具将被释放。
translated by 谷歌翻译
电线杆和建筑物边缘经常是城市道路上可观察到的对象,为各种计算机视觉任务提供了可靠的提示。为了重复提取它们作为特征并在离散激光镜头框架之间进行注册,我们提出了第一个基于学习的功能分割和LIDAR点云中3D线的描述模型。为了训练我们的模型,而无需耗时和乏味的数据标记过程,我们首先生成了目标线基本外观的合成原始图,并构建一个迭代线自动标记的过程,以逐步完善真实激光扫描的线路标签。我们的分割模型可以在任意规模的扰动下提取线,我们使用共享的EDGECONV编码层共同训练两个分割和描述符头。基于模型,我们可以在没有初始转换提示的情况下构建一个高度可用的全局注册模块,用于点云注册。实验表明,我们基于线的注册方法对基于最先进的方法的方法具有很高的竞争力。我们的代码可在https://github.com/zxrzju/superline3d.git上找到。
translated by 谷歌翻译
In this paper, we address semantic segmentation of road-objects from 3D LiDAR point clouds. In particular, we wish to detect and categorize instances of interest, such as cars, pedestrians and cyclists. We formulate this problem as a pointwise classification problem, and propose an end-to-end pipeline called SqueezeSeg based on convolutional neural networks (CNN): the CNN takes a transformed LiDAR point cloud as input and directly outputs a point-wise label map, which is then refined by a conditional random field (CRF) implemented as a recurrent layer. Instance-level labels are then obtained by conventional clustering algorithms. Our CNN model is trained on LiDAR point clouds from the KITTI [1] dataset, and our point-wise segmentation labels are derived from 3D bounding boxes from KITTI. To obtain extra training data, we built a LiDAR simulator into Grand Theft Auto V (GTA-V), a popular video game, to synthesize large amounts of realistic training data. Our experiments show that SqueezeSeg achieves high accuracy with astonishingly fast and stable runtime (8.7 ± 0.5 ms per frame), highly desirable for autonomous driving applications. Furthermore, additionally training on synthesized data boosts validation accuracy on real-world data. Our source code and synthesized data will be open-sourced.
translated by 谷歌翻译