Despite significant recent advances in the field of face recognition [10,14,15,17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors.Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-art face recognition performance using only 128-bytes per face.On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets.We also introduce the concept of harmonic embeddings, and a harmonic triplet loss, which describe different versions of face embeddings (produced by different networks) that are compatible to each other and allow for direct comparison between each other.
translated by 谷歌翻译
图像分辨率或一般图像质量在当今面部识别系统的性能中起着至关重要的作用。为了解决这个问题,我们提出了一种流行的三胞胎损失的新型组合,以通过微调现有面部识别模型来提高与图像分辨率的鲁棒性。随着八度损失,我们利用高分辨率图像及其合成下采样变体之间的关系与其身份标签共同采样。通过我们的方法对几种最先进的方法进行微调证明,我们可以在各种数据集上显着提高跨分辨率(高低分辨率)面部验证的性能,而不会有意义地加剧高高度的性能分辨率图像。我们的方法应用于FaceTransFormer网络,在挑战性的XQLFW数据集上达到95.12%的面对验证精度,同时在LFW数据库上达到99.73%。此外,低到低面验证精度从我们的方法中受益。我们发布我们的代码,以允许将OCTUPLET损失的无缝集成到现有框架中。
translated by 谷歌翻译
In modern face recognition, the conventional pipeline consists of four stages: detect ⇒ align ⇒ represent ⇒ classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4,000 identities. The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance.
translated by 谷歌翻译
Deep embeddings answer one simple question: How similar are two images? Learning these embeddings is the bedrock of verification, zero-shot learning, and visual search. The most prominent approaches optimize a deep convolutional network with a suitable loss function, such as contrastive loss or triplet loss. While a rich line of work focuses solely on the loss functions, we show in this paper that selecting training examples plays an equally important role. We propose distance weighted sampling, which selects more informative and stable examples than traditional approaches. In addition, we show that a simple margin based loss is sufficient to outperform all other loss functions. We evaluate our approach on the Stanford Online Products, CAR196, and the CUB200-2011 datasets for image retrieval and clustering, and on the LFW dataset for face verification. Our method achieves state-of-the-art performance on all of them.
translated by 谷歌翻译
使用面部作为生物识别标识特征是通过捕获过程的非接触性质和识别算法的高准确度的激励。在目前的Covid-19大流行之后,在公共场所施加了面膜,以保持大流行。然而,由于戴着面具而面的遮挡是面部识别系统的新出现挑战。在本文中,我们提出了一种改进掩蔽面部识别性能的解决方案。具体地,我们提出了在现有面部识别模型的顶部操作的嵌入揭露模型(EUM)。我们还提出了一种新颖的损失功能,自限制的三态(SRT),使欧莱斯能够产生类似于相同身份的未掩蔽面的嵌入物。实现了三个面部识别模型,两个真实屏蔽数据集和两个合成产生的掩蔽面部数据集所取得的评价结果​​证明我们的提出方法在大多数实验环境中显着提高了性能。
translated by 谷歌翻译
Recent years witnessed the breakthrough of face recognition with deep convolutional neural networks. Dozens of papers in the field of FR are published every year. Some of them were applied in the industrial community and played an important role in human life such as device unlock, mobile payment, and so on. This paper provides an introduction to face recognition, including its history, pipeline, algorithms based on conventional manually designed features or deep learning, mainstream training, evaluation datasets, and related applications. We have analyzed and compared state-of-the-art works as many as possible, and also carefully designed a set of experiments to find the effect of backbone size and data distribution. This survey is a material of the tutorial named The Practical Face Recognition Technology in the Industrial World in the FG2023.
translated by 谷歌翻译
Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
translated by 谷歌翻译
Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations.Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation.
translated by 谷歌翻译
The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-toapples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [31], R-FCN [6] and SSD [26] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
translated by 谷歌翻译
Deep metric learning has gained much popularity in recent years, following the success of deep learning. However, existing frameworks of deep metric learning based on contrastive loss and triplet loss often suffer from slow convergence, partially because they employ only one negative example while not interacting with the other negative classes in each update. In this paper, we propose to address this problem with a new metric learning objective called multi-class N -pair loss. The proposed objective function firstly generalizes triplet loss by allowing joint comparison among more than one negative examples -more specifically, N -1 negative examples -and secondly reduces the computational burden of evaluating deep embedding vectors via an efficient batch construction strategy using only N pairs of examples, instead of (N +1)×N . We demonstrate the superiority of our proposed loss to the triplet loss as well as other competing loss functions for a variety of tasks on several visual recognition benchmark, including fine-grained object recognition and verification, image clustering and retrieval, and face verification and identification.
translated by 谷歌翻译
The objective of this paper is speaker recognition under noisy and unconstrained conditions.We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset.Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.
translated by 谷歌翻译
Image descriptors based on activations of Convolutional Neural Networks (CNNs) have become dominant in image retrieval due to their discriminative power, compactness of representation, and search efficiency. Training of CNNs, either from scratch or fine-tuning, requires a large amount of annotated data, where a high quality of annotation is often crucial. In this work, we propose to fine-tune CNNs for image retrieval on a large collection of unordered images in a fully automated manner. Reconstructed 3D models obtained by the state-of-the-art retrieval and structure-from-motion methods guide the selection of the training data. We show that both hard-positive and hard-negative examples, selected by exploiting the geometry and the camera positions available from the 3D models, enhance the performance of particular-object retrieval. CNN descriptor whitening discriminatively learned from the same training data outperforms commonly used PCA whitening. We propose a novel trainable Generalized-Mean (GeM) pooling layer that generalizes max and average pooling and show that it boosts retrieval performance. Applying the proposed method to the VGG network achieves state-of-the-art performance on the standard benchmarks: Oxford Buildings, Paris, and Holidays datasets.
translated by 谷歌翻译
Learning the distance metric between pairs of examples is of great importance for learning and visual recognition. With the remarkable success from the state of the art convolutional neural networks, recent works [1, 31] have shown promising results on discriminatively training the networks to learn semantic feature embeddings where similar examples are mapped close to each other and dissimilar examples are mapped farther apart. In this paper, we describe an algorithm for taking full advantage of the training batches in the neural network training by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. This step enables the algorithm to learn the state of the art feature embedding by optimizing a novel structured prediction objective on the lifted problem. Additionally, we collected Online Products dataset: 120k images of 23k classes of online products for metric learning. Our experiments on the CUB-200-2011 [37], CARS196 [19], and Online Products datasets demonstrate significant improvement over existing deep feature embedding methods on all experimented embedding sizes with the GoogLeNet [33] network.
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following three principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we develop a training procedure, based on a new weakly supervised ranking loss, to learn parameters of the architecture in an end-to-end manner from images depicting the same places over time downloaded from Google Street View Time Machine. Finally, we show that the proposed architecture significantly outperforms non-learnt image representations and off-the-shelf CNN descriptors on two challenging place recognition benchmarks, and improves over current stateof-the-art compact image representations on standard image retrieval benchmarks.
translated by 谷歌翻译
We address the problem of distance metric learning (DML), defined as learning a distance consistent with a notion of semantic similarity. Traditionally, for this problem supervision is expressed in the form of sets of points that follow an ordinal relationship -an anchor point x is similar to a set of positive points Y , and dissimilar to a set of negative points Z, and a loss defined over these distances is minimized. While the specifics of the optimization differ, in this work we collectively call this type of supervision Triplets and all methods that follow this pattern Triplet-Based methods. These methods are challenging to optimize. A main issue is the need for finding informative triplets, which is usually achieved by a variety of tricks such as increasing the batch size, hard or semi-hard triplet mining, etc. Even with these tricks, the convergence rate of such methods is slow. In this paper we propose to optimize the triplet loss on a different space of triplets, consisting of an anchor data point and similar and dissimilar proxy points which are learned as well. These proxies approximate the original data points, so that a triplet loss over the proxies is a tight upper bound of the original loss. This proxy-based loss is empirically better behaved. As a result, the proxy-loss improves on state-of-art results for three standard zero-shot learning datasets, by up to 15% points, while converging three times as fast as other triplet-based losses.
translated by 谷歌翻译
随着面部生物识别技术的广泛采用,在自动面部识别(FR)应用中区分相同的双胞胎和非双胞胎外观相似的问题变得越来越重要。由于同卵双胞胎和外观相似的面部相似性很高,因此这些面对对面部识别工具表示最困难的病例。这项工作介绍了迄今为止汇编的最大的双胞胎数据集之一,以应对两个挑战:1)确定相同双胞胎和2)的面部相似性的基线度量和2)应用此相似性措施来确定多ppelgangers的影响或外观 - Alikes,关于大面部数据集的FR性能。面部相似性度量是通过深度卷积神经网络确定的。该网络经过量身定制的验证任务进行培训,旨在鼓励网络在嵌入空间中将高度相似的面对对组合在一起,并达到0.9799的测试AUC。所提出的网络为任何两个给定的面提供了定量相似性评分,并已应用于大规模面部数据集以识别相似的面对对。还执行了一个附加分析,该分析还将面部识别工具返回的比较分数以及提议网络返回的相似性分数。
translated by 谷歌翻译
自动面部识别是一个知名的研究领域。在该领域的最后三十年的深入研究中,已经提出了许多不同的面部识别算法。随着深度学习的普及及其解决各种不同问题的能力,面部识别研究人员集中精力在此范式下创建更好的模型。从2015年开始,最先进的面部识别就植根于深度学习模型。尽管有大规模和多样化的数据集可用于评估面部识别算法的性能,但许多现代数据集仅结合了影响面部识别的不同因素,例如面部姿势,遮挡,照明,面部表情和图像质量。当算法在这些数据集上产生错误时,尚不清楚哪些因素导致了此错误,因此,没有指导需要多个方向进行更多的研究。这项工作是我们以前在2014年开发的作品的后续作品,最终于2016年发表,显示了各种面部方面对面部识别算法的影响。通过将当前的最新技术与过去的最佳系统进行比较,我们证明了在强烈的遮挡下,某些类型的照明和强烈表达的面孔是深入学习算法所掌握的问题,而具有低分辨率图像的识别,极端的姿势变化和开放式识别仍然是一个开放的问题。为了证明这一点,我们使用六个不同的数据集和五种不同的面部识别算法以开源和可重现的方式运行一系列实验。我们提供了运行所有实验的源代码,这很容易扩展,因此在我们的评估中利用自己的深网只有几分钟的路程。
translated by 谷歌翻译
Data in vision domain often exhibit highly-skewed class distribution, i.e., most data belong to a few majority classes, while the minority classes only contain a scarce amount of instances. To mitigate this issue, contemporary classification methods based on deep convolutional neural network (CNN) typically follow classic strategies such as class re-sampling or cost-sensitive training. In this paper, we conduct extensive and systematic experiments to validate the effectiveness of these classic schemes for representation learning on class-imbalanced data. We further demonstrate that more discriminative deep representation can be learned by enforcing a deep network to maintain both intercluster and inter-class margins. This tighter constraint effectively reduces the class imbalance inherent in the local data neighborhood. We show that the margins can be easily deployed in standard deep learning framework through quintuplet instance sampling and the associated triple-header hinge loss. The representation learned by our approach, when combined with a simple k-nearest neighbor (kNN) algorithm, shows significant improvements over existing methods on both high-and low-level vision classification tasks that exhibit imbalanced class distribution.
translated by 谷歌翻译
在本文中,我们提出了一种强大的样本生成方案来构建信息性三联网。所提出的硬样品生成是一种两级合成框架,通过两个阶段的有效正和负样品发生器产生硬样品。第一阶段将锚定向对具有分段线性操作,通过巧妙地设计条件生成的对抗网络来提高产生的样本的质量,以降低模式崩溃的风险。第二阶段利用自适应反向度量约束来生成最终的硬样本。在几个基准数据集上进行广泛的实验,验证了我们的方法比现有的硬样生成算法达到卓越的性能。此外,我们还发现,我们建议的硬样品生成方法结合现有的三态挖掘策略可以进一步提高深度度量学习性能。
translated by 谷歌翻译