通常,对于基于深网的良好性能文本检测器获得良好的培训和长期培训计算是必要的。在本文中,我们提出了一个新的场景文本检测网络(称为狂热者),其快速收敛速度和准确的文本本地化。所提出的粉丝是基于变压器特征学习和标准化的傅立叶描述符建模的端到端文本检测器,在该图案中,傅立叶描述符建议网络和迭代文本解码网络旨在有效,准确地识别文本建议。此外,还提出了一个密集的匹配策略和精心设计的损失函数,以优化网络性能。进行了广泛的实验,以证明所提出的粉丝可以通过更少的训练时期和没有预训练来实现SOTA性能。当我们引入其他数据进行预训练时,提出的粉丝可以在MSRATD500,CTW1500和TotalText上实现SOTA性能。消融实验还验证了我们贡献的有效性。
translated by 谷歌翻译
DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10× less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach. Code is released at https:// github.com/fundamentalvision/Deformable-DETR.
translated by 谷歌翻译
我们将Dino(\ textbf {d} etr与\ textbf {i} mpred de \ textbf {n} oising hand \ textbf {o} r boxes),一种最先进的端到端对象检测器。 % 在本文中。 Dino通过使用一种对比度方法来降级训练,一种用于锚定初始化的混合查询选择方法以及对盒子预测的两次方案,通过使用对比的方式来改善性能和效率的模型。 Dino在$ 12 $时代获得$ 49.4 $ ap,$ 12.3 $ ap in Coco $ 24 $时期,带有Resnet-50骨干和多尺度功能,可显着改善$ \ textbf {+6.0} $ \ textbf {ap}和ap {ap}和ap}和$ \ textbf {+2.7} $ \ textbf {ap}与以前的最佳detr样模型相比,分别是dn-detr。 Dino在模型大小和数据大小方面都很好地缩放。没有铃铛和哨子,在对objects365数据集进行了swinl骨架的预训练后,Dino在两个Coco \ texttt {val2017}($ \ textbf {63.2} $ \ textbf {ap ap})和\ testtt { -dev}(\ textbf {$ \ textbf {63.3} $ ap})。与排行榜上的其他模型相比,Dino大大降低了其模型大小和预训练数据大小,同时实现了更好的结果。我们的代码将在\ url {https://github.com/ideacvr/dino}提供。
translated by 谷歌翻译
由于字体,大小,颜色和方向的各种文本变化,任意形状的场景文本检测是一项具有挑战性的任务。大多数现有基于回归的方法求助于回归文本区域的口罩或轮廓点以建模文本实例。但是,回归完整的口罩需要高训练的复杂性,并且轮廓点不足以捕获高度弯曲的文本的细节。为了解决上述限制,我们提出了一个名为TextDCT的新颖的轻巧锚文本检测框架,该框架采用离散的余弦变换(DCT)将文本掩码编码为紧凑型向量。此外,考虑到金字塔层中训练样本不平衡的数量,我们仅采用单层头来进行自上而下的预测。为了建模单层头部的多尺度文本,我们通过将缩水文本区域视为正样本,并通过融合来介绍一个新颖的积极抽样策略,并通过融合来设计特征意识模块(FAM),以实现空间意识和规模的意识丰富的上下文信息并关注更重要的功能。此外,我们提出了一种分割的非量最大抑制(S-NMS)方法,该方法可以过滤低质量的掩模回归。在四个具有挑战性的数据集上进行了广泛的实验,这表明我们的TextDCT在准确性和效率上都获得了竞争性能。具体而言,TextDCT分别以每秒17.2帧(FPS)和F-measure的F-MEASIE达到85.1,而CTW1500和Total-Text数据集的F-Measure 84.9分别为15.1 fps。
translated by 谷歌翻译
时间动作检测(TAD)旨在确定未修剪视频中每个动作实例的语义标签和边界。先前的方法通过复杂的管道来解决此任务。在本文中,我们提出了一个具有简单集的预测管道的端到端时间动作检测变压器(TADTR)。给定一组名为“动作查询”的可学习嵌入,Tadtr可以从每个查询的视频中自适应提取时间上下文,并直接预测动作实例。为了适应TAD的变压器,我们提出了三个改进,以提高其所在地意识。核心是一个时间可变形的注意模块,在视频中有选择地参加一组稀疏的密钥片段。片段的完善机制和动作回归头旨在完善预测实例的边界和信心。 TADTR需要比以前的检测器更低的计算成本,同时保留了出色的性能。作为一个独立的检测器,它在Thumos14(56.7%地图)和HACS段(32.09%地图)上实现了最先进的性能。结合一个额外的动作分类器,它在ActivityNet-1.3上获得了36.75%的地图。我们的代码可在\ url {https://github.com/xlliu7/tadtr}上获得。
translated by 谷歌翻译
Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (2 %-4 % mAP) on the ImageNet VID dataset. TransVOD yields comparable performances on the benchmark of ImageNet VID. Then, we present two improved versions of TransVOD including TransVOD++ and TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0 % mAP. Our proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7 % mAP while running at around 30 FPS on a single V100 GPU device. Code and models will be available for further research.
translated by 谷歌翻译
在本文中,我们提出了简单的关注机制,我们称之为箱子。它可以实现网格特征之间的空间交互,从感兴趣的框中采样,并提高变压器的学习能力,以获得几个视觉任务。具体而言,我们呈现拳击手,短暂的框变压器,通过从输入特征映射上的参考窗口预测其转换来参加一组框。通过考虑其网格结构,拳击手通过考虑其网格结构来计算这些框的注意力。值得注意的是,Boxer-2D自然有关于其注意模块内容信息的框信息的原因,使其适用于端到端实例检测和分段任务。通过在盒注意模块中旋转的旋转的不变性,Boxer-3D能够从用于3D端到端对象检测的鸟瞰图平面产生识别信息。我们的实验表明,拟议的拳击手-2D在Coco检测中实现了更好的结果,并且在Coco实例分割上具有良好的和高度优化的掩模R-CNN可比性。 Boxer-3D已经为Waymo开放的车辆类别提供了令人信服的性能,而无需任何特定的类优化。代码将被释放。
translated by 谷歌翻译
虽然用变压器(DETR)的检测越来越受欢迎,但其全球注意力建模需要极其长的培训期,以优化和实现有前途的检测性能。现有研究的替代方案主要开发先进的特征或嵌入设计来解决培训问题,指出,基于地区的兴趣区域(ROI)的检测细化可以很容易地帮助减轻DETR方法培训的难度。基于此,我们在本文中介绍了一种新型的经常性闪闪发光的解码器(Rego)。特别是,REGO采用多级复发处理结构,以帮助更准确地逐渐关注前景物体。在每个处理阶段,从ROI的闪烁特征提取视觉特征,其中来自上阶段的检测结果的放大边界框区域。然后,引入了基于一瞥的解码器,以提供基于前一级的瞥见特征和注意力建模输出的精细检测结果。在实践中,Refo可以很容易地嵌入代表性的DETR变体,同时保持其完全端到端的训练和推理管道。特别地,Refo帮助可变形的DETR在MSCOCO数据集上实现44.8AP,只有36个训练时期,与需要500和50时期的第一DETR和可变形的DETR相比,分别可以分别实现相当的性能。实验还表明,Rego始终如一地提升不同DETR探测器的性能高达7%的相对增益,在相同的50次训练时期。代码可通过https://github.com/zhechen/deformable-detr-rego获得。
translated by 谷歌翻译
The DETR object detection approach applies the transformer encoder and decoder architecture to detect objects and achieves promising performance. In this paper, we present a simple approach to address the main problem of DETR, the slow convergence, by using representation learning technique. In this approach, we detect an object bounding box as a pair of keypoints, the top-left corner and the center, using two decoders. By detecting objects as paired keypoints, the model builds up a joint classification and pair association on the output queries from two decoders. For the pair association we propose utilizing contrastive self-supervised learning algorithm without requiring specialized architecture. Experimental results on MS COCO dataset show that Pair DETR can converge at least 10x faster than original DETR and 1.5x faster than Conditional DETR during training, while having consistently higher Average Precision scores.
translated by 谷歌翻译
Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture. Code is available at https://github.com/jozhang97/DETA.
translated by 谷歌翻译
检测变压器已在富含样品的可可数据集上实现了竞争性能。但是,我们显示他们中的大多数人在小型数据集(例如CityScapes)上遭受了大量的性能下降。换句话说,检测变压器通常是渴望数据的。为了解决这个问题,我们通过逐步过渡从数据效率的RCNN变体到代表性的DETR,从经验中分析影响数据效率的因素。经验结果表明,来自本地图像区域的稀疏特征采样可容纳关键。基于此观察结果,我们通过简单地简单地交替如何在跨意义层构建键和价值序列,从而减少现有检测变压器的数据问题,并对原始模型进行最小的修改。此外,我们引入了一种简单而有效的标签增强方法,以提供更丰富的监督并提高数据效率。实验表明,我们的方法可以很容易地应用于不同的检测变压器,并在富含样品和样品的数据集上提高其性能。代码将在\ url {https://github.com/encounter1997/de-detrs}上公开提供。
translated by 谷歌翻译
DETR方法中引入的查询机制正在改变对象检测的范例,最近有许多基于查询的方法获得了强对象检测性能。但是,当前基于查询的检测管道遇到了以下两个问题。首先,需要多阶段解码器来优化随机初始化的对象查询,从而产生较大的计算负担。其次,训练后的查询是固定的,导致不满意的概括能力。为了纠正上述问题,我们在较快的R-CNN框架中提出了通过查询生成网络预测的特征对象查询,并开发了一个功能性的查询R-CNN。可可数据集的广泛实验表明,我们的特征查询R-CNN获得了所有R-CNN探测器的最佳速度准确性权衡,包括最近的最新稀疏R-CNN检测器。该代码可在\ url {https://github.com/hustvl/featurized-queryrcnn}中获得。
translated by 谷歌翻译
We present in this paper a novel denoising training method to speedup DETR (DEtection TRansformer) training and offer a deepened understanding of the slow convergence issue of DETR-like methods. We show that the slow convergence results from the instability of bipartite graph matching which causes inconsistent optimization goals in early training stages. To address this issue, except for the Hungarian loss, our method additionally feeds ground-truth bounding boxes with noises into Transformer decoder and trains the model to reconstruct the original boxes, which effectively reduces the bipartite graph matching difficulty and leads to a faster convergence. Our method is universal and can be easily plugged into any DETR-like methods by adding dozens of lines of code to achieve a remarkable improvement. As a result, our DN-DETR results in a remarkable improvement ($+1.9$AP) under the same setting and achieves the best result (AP $43.4$ and $48.6$ with $12$ and $50$ epochs of training respectively) among DETR-like methods with ResNet-$50$ backbone. Compared with the baseline under the same setting, DN-DETR achieves comparable performance with $50\%$ training epochs. Code is available at \url{https://github.com/FengLi-ust/DN-DETR}.
translated by 谷歌翻译
在任意形状的文本检测中,定位准确的文本边界具有挑战性且不平淡。现有方法通常会遭受间接的文本边界建模或复杂的后处理。在本文中,我们通过边界学习进行系统地呈现一个统一的粗到精细的框架,以进行任意形状的文本检测,该框架可以准确有效地定位文本边界而无需后处理。在我们的方法中,我们通过创新的文本边界明确地对文本边界进行了明确模拟迭代边界变压器以粗到十的方式。这样,我们的方法可以直接获得准确的文本边界并放弃复杂的后处理以提高效率。具体而言,我们的方法主要由特征提取主链,边界建议模块和迭代优化的边界变压器模块组成。由多层扩张卷积组成的边界提案模块将计算重要的先验信息(包括分类图,距离场和方向场),以生成粗边界建议,同时指导边界变压器的优化。边界变压器模块采用编码器模块结构,其中编码器由具有残差连接的多层变压器块构造,而解码器是一个简单的多层perceptron网络(MLP)。在先验信息的指导下,边界变压器模块将通过迭代边界变形逐渐完善粗边界建议。此外,我们提出了一种新型的边界能量损失(BEL),该损失引入了能量最小化约束和单调减少约束的能量,以进一步优化和稳定边界细化的学习。关于公开可用和挑战数据集的广泛实验证明了我们方法的最先进性能和有希望的效率。
translated by 谷歌翻译
我们提出了一种直接的,基于回归的方法,以从单个图像中估计2D人姿势。我们将问题提出为序列预测任务,我们使用变压器网络解决了问题。该网络直接学习了从图像到关键点坐标的回归映射,而无需诉诸中间表示(例如热图)。这种方法避免了与基于热图的方法相关的许多复杂性。为了克服以前基于回归的方法的特征错位问题,我们提出了一种注意机制,该机制适应与目标关键最相关的功能,从而大大提高了准确性。重要的是,我们的框架是端到端的可区分,并且自然学会利用关键点之间的依赖关系。两个主要的姿势估计数据集在MS-Coco和MPII上进行的实验表明,我们的方法在基于回归的姿势估计中的最新方法显着改善。更值得注意的是,与最佳的基于热图的姿势估计方法相比,我们的第一种基于回归的方法是有利的。
translated by 谷歌翻译
多模式变压器表现出高容量和灵活性,可将图像和文本对齐以进行视觉接地。然而,由于自我发挥操作的二次时间复杂性,仅编码的接地框架(例如,transvg)遭受了沉重的计算。为了解决这个问题,我们通过将整个接地过程解散为编码和解码阶段,提出了一种新的多模式变压器体系结构,以动态MDETR形成。关键观察是,图像中存在很高的空间冗余。因此,我们通过在加快视觉接地过程之前利用这种稀疏性来设计一种新的动态多模式变压器解码器。具体而言,我们的动态解码器由2D自适应采样模块和文本引导的解码模块组成。采样模块旨在通过预测参考点的偏移来选择这些信息补丁,而解码模块则可以通过在图像功能和文本功能之间执行交叉注意来提取接地对象信息。这两个模块也被堆叠起来,以逐渐弥合模态间隙,并迭代地完善接地对象的参考点,最终实现了视觉接地的目的。对五个基准测试的广泛实验表明,我们提出的动态MDETR实现了计算和准确性之间的竞争权衡。值得注意的是,在解码器中仅使用9%的特征点,我们可以降低〜44%的多模式变压器的GLOP,但仍然比仅编码器的对应物更高的精度。此外,为了验证其概括能力并扩展我们的动态MDETR,我们构建了第一个单级剪辑授权的视觉接地框架,并在这些基准测试中实现最先进的性能。
translated by 谷歌翻译
我们提出了一种新的表结构识别方法(TSR)方法,称为TSRFormer,以稳健地识别来自各种表图像的几何变形的复杂表的结构。与以前的方法不同,我们将表分离线预测作为线回归问题,而不是图像分割问题,并提出了一种新的两阶段基于基于DETR的分离器预测方法,称为\ textbf {sep} arator \ textbf {re} re} tr} ansformer(sepretr),直接预测与表图像的分离线。为了使两阶段的DETR框架有效地有效地在分离线预测任务上工作,我们提出了两个改进:1)一种先前增强的匹配策略,以解决慢速收敛问题的detr; 2)直接来自高分辨率卷积特征图的样本特征的新的交叉注意模块,以便以低计算成本实现高定位精度。在分离线预测之后,使用简单的基于关系网络的单元格合并模块来恢复跨越单元。借助这些新技术,我们的TSRFormer在包括SCITSR,PubTabnet和WTW在内的多个基准数据集上实现了最先进的性能。此外,我们已经验证了使用复杂的结构,无边界的单元,大空间,空的或跨越的单元格以及在更具挑战性的现实世界内部数据集中扭曲甚至弯曲的形状的桌子的鲁棒性。
translated by 谷歌翻译
人对象交互(HOI)检测作为对象检测任务的下游需要本地化人和对象,并从图像中提取人类和对象之间的语义关系。最近,由于其高效率,一步方法已成为这项任务的新趋势。然而,这些方法侧重于检测可能的交互点或过滤人对象对,忽略空间尺度处的不同物体的位置和大小的可变性。为了解决这个问题,我们提出了一种基于变压器的方法,Qahoi(用于人对象交互检测的查询锚点),它利用了多尺度架构来提取来自不同空间尺度的特征,并使用基于查询的锚来预测全部Hoi实例的元素。我们进一步调查了强大的骨干,显着提高了QAHOI的准确性,QAHOI与基于变压器的骨干优于最近的最近最先进的方法,通过HICO-DEC基准。源代码以$ \ href {https://github.com/cjw2021/qhoii} {\ text {this https url}} $。
translated by 谷歌翻译
与周围摄像机的3D对象检测是自动驾驶的有希望的方向。在本文中,我们提出了Simmod,这是用于解决问题的多相对象检测的简单基线。为了合并多视图信息,并基于以前对单眼3D对象检测的努力,该框架建立在样本的对象建议基础上,并旨在以两阶段的方式工作。首先,我们提取多尺度特征,并在每个单眼图像上生成透视对象建议。其次,多视图提案进行了汇总,然后在DETR3D式中使用多视图和多尺度视觉特征进行迭代完善。精制的提案被端到端解码为检测结果。为了进一步提高性能,我们将辅助分支与提案生成并列以增强特征学习。此外,我们设计了目标过滤和教师强迫的方法,以促进两阶段训练的一致性。我们对Nuscenes的3D对象检测基准进行了广泛的实验,以证明Simmod的有效性并实现新的最新性能。代码将在https://github.com/zhangyp15/simmod上找到。
translated by 谷歌翻译