神经网络的结构设计对于深度学习的成功至关重要。尽管大多数先前在进化学习方面的工作旨在直接搜索网络的结构,但在另一个有希望的轨道频道修剪中,几乎没有尝试过,最近在设计有效的深度学习模型方面取得了重大进展。实际上,先前的修剪方法采用人造修剪功能来评估渠道对渠道修剪的重要性,这需要域知识,并且可以是最佳的。为此,我们开创了使用遗传编程(GP)自动发现强度修剪指标的。具体而言,我们制作了一个新颖的设计空间来表达高质量和可转移的修剪功能,从而确保了端到端的演化过程,在该过程中,进化功能不需要手动修改以使其在演变后的传递性。与先前的方法不同,我们的方法可以提供紧凑的修剪网络,以提供有效的推理和新颖的封闭形式的修剪指标,这些指标在数学上可以解释,因此可以推广到不同的修剪任务。尽管演变是在小型数据集上进行的,但我们的功能在应用于更具挑战性的数据集时显示出令人鼓舞的结果,与演化过程中使用的功能不同。例如,在ILSVRC-2012上,进化的函数可获得最新的修剪结果。
translated by 谷歌翻译
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin, 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization. * Equal contribution. † Work done while visiting UC Berkeley.
translated by 谷歌翻译
In this paper, we propose a novel meta learning approach for automatic channel pruning of very deep neural networks. We first train a PruningNet, a kind of meta network, which is able to generate weight parameters for any pruned structure given the target network. We use a simple stochastic structure sampling method for training the PruningNet. Then, we apply an evolutionary procedure to search for good-performing pruned networks. The search is highly efficient because the weights are directly generated by the trained PruningNet and we do not need any finetuning at search time. With a single PruningNet trained for the target network, we can search for various Pruned Networks under different constraints with little human participation. Compared to the state-of-the-art pruning methods, we have demonstrated superior performances on Mo-bileNet V1/V2 and ResNet. Codes are available on https: //github.com/liuzechun/MetaPruning. This work is done when Zechun Liu and Haoyuan Mu are interns at Megvii Technology.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
现有的可区分通道修剪方法通常将缩放因子或掩模在通道后面的掩盖范围内,以减少重要性的修剪过滤器,并假设输入样品统一贡献以过滤重要性。具体而言,实例复杂性对修剪性能的影响尚未得到充分研究。在本文中,我们提出了一个基于实例复杂性滤波器的重要性得分的简单而有效的可区分网络修剪方法上限。我们通过给硬样品给出更高的权重来定义每个样品的实例复杂性与重量相关的重量,并测量样品特异性软膜的加权总和,以模拟不同输入的非均匀贡献,这鼓励硬样品主导修剪过程和模型性能保存完好。此外,我们还引入了一个新的正规器,以鼓励面具两极分化,以便很容易找到甜蜜的位置以识别要修剪的过滤器。各种网络体系结构和数据集的性能评估表明,CAP在修剪大型网络方面具有优势。例如,CAP在删除65.64%的拖鞋后,CAP在CIFAR-10数据集上的RESNET56的准确性提高了0.33%,而Prunes在ImagEnet数据集上的RESNET50的PRUNES 87.75%,只有0.89%的TOP-1精度损失。
translated by 谷歌翻译
卷积神经网络(CNN)具有一定量的参数冗余,滤波器修剪旨在去除冗余滤波器,并提供在终端设备上应用CNN的可能性。但是,以前的作品更加注重设计了滤波器重要性的评估标准,然后缩短了具有固定修剪率的重要滤波器或固定数量,以减少卷积神经网络的冗余。它不考虑为每层预留有多少筛选器是最合理的选择。从这个角度来看,我们通过搜索适当的过滤器(SNF)来提出新的过滤器修剪方法。 SNF专用于搜索每层的最合理的保留过滤器,然后是具有特定标准的修剪过滤器。它可以根据不同的拖鞋定制最合适的网络结构。通过我们的方法进行过滤器修剪导致CIFAR-10的最先进(SOTA)精度,并在Imagenet ILSVRC-2012上实现了竞争性能。基于Reset-56网络,在Top-中增加了0.14%的增加0.14% 1对CIFAR-10拖出的52.94%的精度为52.94%。在减少68.68%拖鞋时,CiFar-10上的修剪Resnet-110还提高了0.03%的1 0.03%的精度。对于Imagenet,我们将修剪速率设置为52.10%的拖鞋,前1个精度只有0.74%。该代码可以在https://github.com/pk-l/snf上获得。
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
在过去几年中,神经网络的性能在越来越多的浮点操作(拖鞋)的成本上显着提高。但是,当计算资源有限时,更多的拖鞋可能是一个问题。作为解决这个问题的尝试,修剪过滤器是一种常见的解决方案,但大多数现有的修剪方法不有效地保持模型精度,因此需要大量的芬降时期。在本文中,我们提出了一种自动修剪方法,该方法学习保存的神经元以保持模型精度,同时将絮凝到预定目标。为了完成这项任务,我们介绍了一种可训练的瓶颈,只需要一个单一的单一时期,只需要一个数据集的25.6%(Cifar-10)或7.49%(ILSVRC2012)来了解哪些过滤器。在各种架构和数据集上的实验表明,该方法不仅可以在修剪后保持精度,而且在FineTuning之后也优越现有方法。我们在Reset-50上达到了52.00%的拖鞋,在ILSVRC2012上的灌溉后的前1个精度为47.51%,最先进的(SOTA)精度为76.63%。代码可用(链接匿名审核)。
translated by 谷歌翻译
Neural network pruning offers a promising prospect to facilitate deploying deep neural networks on resourcelimited devices. However, existing methods are still challenged by the training inefficiency and labor cost in pruning designs, due to missing theoretical guidance of non-salient network components. In this paper, we propose a novel filter pruning method by exploring the High Rank of feature maps (HRank). Our HRank is inspired by the discovery that the average rank of multiple feature maps generated by a single filter is always the same, regardless of the number of image batches CNNs receive. Based on HRank, we develop a method that is mathematically formulated to prune filters with low-rank feature maps. The principle behind our pruning is that low-rank feature maps contain less information, and thus pruned results can be easily reproduced. Besides, we experimentally show that weights with high-rank feature maps contain more important information, such that even when a portion is not updated, very little damage would be done to the model performance. Without introducing any additional constraints, HRank leads to significant improvements over the state-of-the-arts in terms of FLOPs and parameters reduction, with similar accuracies. For example, with ResNet-110, we achieve a 58.2%-FLOPs reduction by removing 59.2% of the parameters, with only a small loss of 0.14% in top-1 accuracy on CIFAR-10. With Res-50, we achieve a 43.8%-FLOPs reduction by removing 36.7% of the parameters, with only a loss of 1.17% in the top-1 accuracy on ImageNet. The codes can be available at https://github.com/lmbxmu/HRank.
translated by 谷歌翻译
在本文中,我们研究了在深网(DNS)中修剪的重要性,以及(1)修剪高度参数的DNS之间的Yin&Yang关系,这些DNS已从随机初始化训练,并且(2)培训“巧妙”的小型DNS,这些DNS已“巧妙”。初始化。在大多数情况下,从业者只能诉诸随机初始化,因此强烈需要对DN修剪建立扎实的理解。当前的文献在很大程度上仍然是经验的,缺乏对修剪如何影响DNS决策边界,如何解释修剪以及如何设计相应的原则修剪技术的理论理解。为了解决这些问题,我们建议在连续分段仿射(CPA)DNS的理论分析中采用最新进展。从这个角度来看,我们将能够检测到早期的鸟类(EB)票务现象,为当前的修剪技术提供可解释性,并制定有原则的修剪策略。在研究的每个步骤中,我们进行了广泛的实验,以支持我们的主张和结果;尽管我们的主要目标是增强对DN修剪的当前理解,而不是开发一种新的修剪方法,但我们的样条修剪标准在层和全球修剪方面与先进的修剪方法相当甚至超过了。
translated by 谷歌翻译
Previous works utilized "smaller-norm-less-important" criterion to prune filters with smaller norm values in a convolutional neural network. In this paper, we analyze this norm-based criterion and point out that its effectiveness depends on two requirements that are not always met: (1) the norm deviation of the filters should be large; (2) the minimum norm of the filters should be small. To solve this problem, we propose a novel filter pruning method, namely Filter Pruning via Geometric Median (FPGM), to compress the model regardless of those two requirements. Unlike previous methods, FPGM compresses CNN models by pruning filters with redundancy, rather than those with "relatively less" importance. When applied to two image classification benchmarks, our method validates its usefulness and strengths. Notably, on CIFAR-10, FPGM reduces more than 52% FLOPs on ResNet-110 with even 2.69% relative accuracy improvement. Moreover, on ILSVRC-2012, FPGM reduces more than 42% FLOPs on ResNet-101 without top-5 accuracy drop, which has advanced the state-of-the-art. Code is publicly available on GitHub: https://github.com/he-y/filter-pruning-geometric-median * Corresponding Author. Part of this work was done when Yi Yang was visiting Baidu Research during his Professional Experience Program.
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
神经架构搜索(NAS)在神经网络(NN)的设计和部署方面具有显着提高的生产率。由于NAS通常通过部分或完全训练多个模型来评估多个模型,因此提高的生产率是以大量碳足迹为代价的。为了减轻这种昂贵的训练例程,零击/成本代理在初始化时分析了NN以产生分数,这与其真正的准确性高度相关。零成本代理目前是由专家设计的,这些专家对可能的算法,数据集和神经体系结构设计空间进行了多个经验测试。这降低了生产率,并且是对零成本代理设计的一种不可持续的方法,因为深度学习用例本质上多样化。此外,现有的零成本代理无法跨越神经体系结构设计空间。在本文中,我们提出了一个基因编程框架,以自动化发现零成本代理以进行神经体系结构评分。我们的方法有效地发现了一个可解释且可推广的零成本代理,该代理在NASBENCH-2010和网络设计空间(NDS)的所有数据集和搜索空间上提供了最高得分 - 准确性的相关性。我们认为,这项研究表明了自动发现可以跨网络体系结构设计空间,数据集和任务的零成本代理的有希望的方向。
translated by 谷歌翻译
尽管在许多应用中取得了巨大的成功,但深度神经网络在实践中并不总是强大的。例如,用于分类任务的卷积神经元网络(CNN)模型通常在对某些特定类别的对象分类时表现不佳。在这项工作中,我们关注的是修补CNN模型的弱部分,而不是通过整个模型的昂贵重新培训来改进它。受到软件工程中模块化和组成的基本概念的启发,我们提出了一种压缩模块化方法CNNSplitter,该方法将$ N $ class分类的强CNN模型分解为$ n $ n $ n $ n $ smill CNN模块。每个模块都是一个子模型,其中包含强模型的卷积内核的一部分。为了修补对目标类(TC)进行不满意的弱CNN模型,我们将弱的CNN模型与从强CNN模型获得的相应模块组成。因此,弱CNN模型识别TC的能力可以通过修补来提高。此外,识别非TCS的能力也得到了提高,因为将样品错误分类为TC可以正确分类为非TCS。在三个广泛使用的数据集上使用两个代表性CNN的实验结果表明,在精度和召回方面,TC的平均改进分别为12.54%和2.14%。此外,修补程序将非TCS的准确性提高了1.18%。结果表明,CNNSplitter可以通过模块化和组成来修补弱的CNN模型,从而为开发可靠的CNN模型提供了新的解决方案。
translated by 谷歌翻译
Slimmable Neural Networks (S-Net) is a novel network which enabled to select one of the predefined proportions of channels (sub-network) dynamically depending on the current computational resource availability. The accuracy of each sub-network on S-Net, however, is inferior to that of individually trained networks of the same size due to its difficulty of simultaneous optimization on different sub-networks. In this paper, we propose Slimmable Pruned Neural Networks (SP-Net), which has sub-network structures learned by pruning instead of adopting structures with the same proportion of channels in each layer (width multiplier) like S-Net, and we also propose new pruning procedures: multi-base pruning instead of one-shot or iterative pruning to realize high accuracy and huge training time saving. We also introduced slimmable channel sorting (scs) to achieve calculation as fast as S-Net and zero padding match (zpm) pruning to prune residual structure in more efficient way. SP-Net can be combined with any kind of channel pruning methods and does not require any complicated processing or time-consuming architecture search like NAS models. Compared with each sub-network of the same FLOPs on S-Net, SP-Net improves accuracy by 1.2-1.5% for ResNet-50, 0.9-4.4% for VGGNet, 1.3-2.7% for MobileNetV1, 1.4-3.1% for MobileNetV2 on ImageNet. Furthermore, our methods outperform other SOTA pruning methods and are on par with various NAS models according to our experimental results on ImageNet. The code is available at https://github.com/hideakikuratsu/SP-Net.
translated by 谷歌翻译
通道修剪被广泛用于降低深网模型的复杂性。最近的修剪方法通常通过提出通道重要性标准来识别网络的哪些部分。但是,最近的研究表明,这些标准在所有情况下都不能很好地工作。在本文中,我们提出了一种新颖的功能最小化方法(FSM)方法来压缩CNN模型,该模型通过收敛功能和过滤器的信息来评估特征转移。具体而言,我们首先使用不同层深度的一些普遍方法研究压缩效率,然后提出特征转移概念。然后,我们引入了一种近似方法来估计特征移位的幅度,因为很难直接计算它。此外,我们提出了一种分布优化算法,以补偿准确性损失并提高网络压缩效率。该方法在各种基准网络和数据集上产生最先进的性能,并通过广泛的实验验证。这些代码可以在\ url {https://github.com/lscgx/fsm}上可用。
translated by 谷歌翻译
在本文中,我们提出了MENAS,这是一种有效的基于多试剂进化的NAS方法,人类干预较少。具体而言,我们提出了一个扩大的搜索空间(Mobilenet3-MT),用于Imagenet-1K,并提高两个方面的搜索效率。首先,MENAS共同探索建筑和最佳修剪候选人(彩票),逐渐减少了人口中的平均模型。每种型号都经过培训,并由其彩票票取代,而不是首先搜索繁琐的网络然后进行修剪。其次,我们介绍了个人体重共享,该分享专门用于多重试验NAS,旨在通过分享父母和子女网络之间的权重来摊销培训成本。与超级网的重量共享相比,单个体重分享的排名一致性更为可靠,同时通过防止复杂的超级网训练易于实现。此外,为了使被困在小型模型中的进化过程正规化,在制定父群体时,我们保留了最大模型的小比例,这被证明有益于增强模型性能。广泛的实验结果证明了十分的优势。在ImagEnet-1K数据库上,MENA可实现80.5%的TOP-1准确性,而无需涉及知识蒸馏或更大的图像分辨率。代码和型号将可用。
translated by 谷歌翻译
过滤器修剪方法通过去除选定的过滤器来引入结构稀疏性,因此对于降低复杂性特别有效。先前的作品从验证较小规范的过滤器的角度从经验修剪网络中造成了较小的最终结果贡献。但是,此类标准已被证明对过滤器的分布敏感,并且由于修剪后的容量差距是固定的,因此准确性可能很难恢复。在本文中,我们提出了一种称为渐近软簇修剪(ASCP)的新型过滤器修剪方法,以根据过滤器的相似性来识别网络的冗余。首先通过聚类来区分来自参数过度的网络的每个过滤器,然后重建以手动将冗余引入其中。提出了一些聚类指南,以更好地保留特征提取能力。重建后,允许更新过滤器,以消除错误选择的效果。此外,还采用了各种修剪率的衰减策略来稳定修剪过程并改善最终性能。通过逐渐在每个群集中生成更相同的过滤器,ASCP可以通过通道添加操作将其删除,几乎没有准确性下降。 CIFAR-10和Imagenet数据集的广泛实验表明,与许多最新算法相比,我们的方法可以取得竞争性结果。
translated by 谷歌翻译
本文旨在探讨神经架构搜索(NAS)的可行性仅在不使用任何原始训练数据的情况下给出预先训练的模型。这是实质保护,偏离避免等的重要情况。为实现这一目标,我们首先通过从预先训练的深神经网络中恢复知识来综合可用数据。然后我们使用合成数据及其预测的软标签来指导神经结构搜索。我们确定NAS任务需要具有足够的语义,多样性和来自自然图像的最小域间隙的合成数据(我们在此处瞄准)。对于语义,我们提出了递归标签校准,以产生更多的信息性输出。对于多样性,我们提出了一个区域更新策略,以产生更多样化和富集的合成数据。对于最小的域间隙,我们使用输入和特征级正则化来模拟潜在空间的原始数据分布。我们将我们提出的三个流行NAS算法实例化:飞镖,Proxylessnas和Spos。令人惊讶的是,我们的结果表明,通过搜索我们的合成数据来实现的架构,实现了与从原始的架构中搜索的架构相当的准确性,首次导出了NAS可以有效完成的结论如果合成方法设计良好,则无需访问原件或称为自然数据。我们的代码将公开提供。
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译