实体对齐(EA)在学术界和工业中都引起了广泛的关注,该行业旨在寻求具有不同知识图(KGS)相同含义的实体。 KGS中的实体之间存在实质性的多步关系路径,表明实体的语义关系。但是,现有方法很少考虑路径信息,因为并非所有自然路径都促进EA判断。在本文中,我们提出了一个更有效的实体对齐框架RPR-RHGT,该框架集成了关系和路径结构信息以及KGS中的异质信息。令人印象深刻的是,开发了一种初始可靠的路径推理算法来生成有利于EA任务的路径,从KGS的关系结构中,这是文献中第一个成功使用无限制路径信息的算法。此外,为了有效地捕获实体社区中的异质特征,设计的异质图变压器旨在建模KGS的关系和路径结构。在三个著名数据集上进行的广泛实验表明,RPR-RHGT的表现明显优于11种最佳方法,超过了命中率@1的最佳性能基线最高8.62%。我们还表现出比基线在训练集的不同比率和更难数据集的基线上更好的性能。
translated by 谷歌翻译
实体对齐是将知识图(KGS)与多个源集成的重要步骤。以前的实体对齐尝试已经探索了不同的kg结构,例如基于邻域和基于路径的上下文,以学习实体嵌入物,但它们受到捕获多上下文特征的限制。此外,大多数方法直接利用嵌入相似性以确定实体对齐,而不考虑实体和关系之间的全局互动。在这项工作中,我们提出了一个明智的多上下文实体对齐(IMEA)模型来解决这些问题。特别是,我们引入变压器以灵活地捕获关系,路径和邻域背景,并根据嵌入相似度和关系/实体功能设计整体推理以估计对齐概率。从整体推理获得的对准证据通过所提出的软标签编辑进一步注入变压器,以通知嵌入学习。与现有的最先进的实体对准方法相比,若干基准数据集上的实验结果证明了IMEA模型的优越性。
translated by 谷歌翻译
Entity alignment is to find identical entities in different knowledge graphs (KGs) that refer to the same real-world object. Embedding-based entity alignment techniques have been drawing a lot of attention recently because they can help solve the issue of symbolic heterogeneity in different KGs. However, in this paper, we show that the progress made in the past was due to biased and unchallenging evaluation. We highlight two major flaws in existing datasets that favor embedding-based entity alignment techniques, i.e., the isomorphic graph structures in relation triples and the weak heterogeneity in attribute triples. Towards a critical evaluation of embedding-based entity alignment methods, we construct a new dataset with heterogeneous relations and attributes based on event-centric KGs. We conduct extensive experiments to evaluate existing popular methods, and find that they fail to achieve promising performance. As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment. The dataset and source code are publicly available to foster future research. Our work calls for more effective and practical embedding-based solutions to entity alignment.
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
实体对齐(EA)的目的是在不同的知识图(kgs)中找到指代现实世界中同一对象的实体。最近的研究结合了时间信息,以增强KGS的表示。暂时KGS(TKG)之间的EA的现有方法利用时间感知的注意机制将关系和时间信息纳入实体嵌入中。该方法通过使用时间信息优于先前的方法。但是,我们认为,由于大多数TKG具有统一的时间表示,因此不必学习kgs中的时间信息的嵌入。因此,我们提出了一个简单的图形神经网络(GNN)模型,并结合了时间信息匹配机制,该模型以更少的时间和更少的参数实现了更好的性能。此外,由于对齐种子很难在现实世界应用中标记,因此我们还提出了一种通过TKG的时间信息生成无监督比对种子的方法。公共数据集的广泛实验表明,我们的监督方法显着优于先前的方法,而无监督的方法具有竞争性能。
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
多模式实体对齐旨在确定两个不同的多模式知识图之间的等效实体,这些实体由与实体相关的结构三元组和图像组成。大多数先前的作品都集中在如何利用和编码不同模式中的信息,而由于模态异质性,因此在实体对齐中利用多模式知识并不是微不足道的。在本文中,我们提出了基于多模式对比度学习的实体比对模型McLea,以获得多模式实体对准的有效联合表示。与以前的工作不同,麦克莱尔(McLea)考虑了面向任务的模式,并为每个实体表示形式建模模式间关系。特别是,麦克莱(McLea)首先从多种模式中学习多个单独的表示,然后进行对比学习以共同对模式内和模式间相互作用进行建模。广泛的实验结果表明,在受监督和无监督的设置下,MCLEA在公共数据集上优于公共数据集的最先进的基线。
translated by 谷歌翻译
知识图(kg)对齐 - 指识别不同kgs中同一件事的实体的任务 - 被认为是KG构造领域中最重要的操作之一。然而,现有的对齐技术通常假设输入kgs是完整的并且同性的,这是由于域,大小和稀疏性的现实世界异质性而不是真实。在这项工作中,我们解决了与代表学习对齐不完整的KG对齐的问题。我们的KG嵌入式框架利用了两个特征频道:基于传输型和基于接近的。前者通过翻译路径捕获实体之间的一致性约束,而后者通过注意引导关系感知图形神经网络捕获KG的邻域结构。两个特征频道共同学习以在输入kgs之间交换重要特征,同时强制在同一嵌入空间中强制输入kg的输出表示。此外,我们开发了缺失的链接检测器,该探测器发现并恢复培训过程中输入kgs中的缺失链接,这有助于减轻不完整性问题,从而提高学习象征的兼容性。然后将嵌入的熔合融合以生成对准结果,并且高置信匹配节点对被更新为预先调整的监控数据以逐渐改善嵌入。经验结果表明,我们的型号比SOTA更准确,而且对不同级别的不完整性较高,高达15.2 \%。我们还证明了KGS之间交换的知识有助于揭示知识图表(A.K.A.知识完成)的看不见的事实,结果比SOTA知识图形完成技术高3.5 \%。
translated by 谷歌翻译
知识图(kgs)在许多应用程序中越来越重要的基础架构,同时患有不完整问题。 KG完成任务(KGC)自动根据不完整的KG预测缺失的事实。但是,现有方法在现实情况下表现不佳。一方面,他们的性能将巨大的降解,而kg的稀疏性越来越大。另一方面,预测的推理过程是一个不可信的黑匣子。本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即HOGRN。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地模拟具有可解释性的KG结构。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚合和基于设计组成的注意。轻巧的设计使HOGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果表现出了令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要成分的有效性。我们的代码将在接受后发布。
translated by 谷歌翻译
知识图(KG)嵌入旨在学习连续矢量空间中kg的实体和关系的潜在表示。一个经验观察是,与相同关系相关的头部(尾巴)实体通常具有相似的语义属性 - 特别是它们通常属于同一类别 - 无论他们在kg中彼此之间有多远。也就是说,他们具有全球语义相似性。但是,许多现有方法基于本地信息得出了kg嵌入,这些信息无法有效地捕获实体之间的这种全球语义相似性。为了应对这一挑战,我们提出了一种新颖的方法,该方法引入了一组称为\ textit {\ textbf {关系原型实体}}的虚拟节点,以表示由相同关系连接的头和尾部实体的原型。通过强制实体的嵌入靠近其相关的原型的嵌入,我们的方法可以有效地鼓励实体的全球语义相似性(可以在kg中很远 - 通过相同的关系相连。实体一致性和KG完成任务的实验表明,我们的方法显着优于最近的最新方法。
translated by 谷歌翻译
知识图形嵌入(KGE)旨在学习实体和关系的陈述。大多数KGE模型取得了巨大的成功,特别是在外推情景中。具体地,考虑到看不见的三倍(H,R,T),培训的模型仍然可以正确地预测(H,R,Δ)或H(Δ,r,t),这种外推能力令人印象深刻。但是,大多数现有的KGE工作侧重于设计精致三重建模功能,主要告诉我们如何衡量观察三元的合理性,但是对为什么可以推断到未看见数据的原因有限的解释,以及什么是重要因素帮助Kge外推。因此,在这项工作中,我们试图研究kge外推两个问题:1。凯格如何推断出看看的数据? 2.如何设计KGE模型,具有更好的外推能力?对于问题1,我们首先分别讨论外推和关系,实体和三级的影响因素,提出了三种语义证据(SES),可以从列车集中观察,并为推断提供重要的语义信息。然后我们通过对几种典型KGE方法的广泛实验验证SES的有效性。对于问题2,为了更好地利用三个级别的SE,我们提出了一种新的基于GNN的KGE模型,称为语义证据意识图形神经网络(SE-GNN)。在SE-GNN中,每个级别的SE由相应的邻居图案明确地建模,并且通过多层聚合充分合并,这有助于获得更多外推知识表示。最后,通过对FB15K-237和WN18RR数据集的广泛实验,我们认为SE-GNN在知识图表完成任务上实现了最先进的性能,并执行更好的外推能力。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
知识图的归纳链路预测旨在预测未见实体之间的缺失联系,而那些未在训练阶段显示的实体。大多数以前的作品都学习实体的特定实体嵌入,这些实体无法处理看不见的实体。最近的几种方法利用封闭子图来获得归纳能力。但是,所有这些作品仅在没有完整的邻近关系的情况下考虑子图的封闭部分,这导致了忽略部分邻近关系的问题,并且很难处理稀疏的子图。为了解决这个问题,我们提出了SNRI子图邻近关系Infomax,它足够从两个方面利用完整的相邻关系:节点特征的相邻关系特征和稀疏子图的相邻关系路径。为了进一步以全球方式建模邻近关系,我们对知识图进行创新的相互信息(MI)最大化。实验表明,SNRI在归纳链路预测任务上的大幅度优于现有的最新方法,并验证以全局方式探索完整的邻近关系的有效性,以表征节点特征和在稀疏子分类上的理由。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
虽然最先进的传统代表学习(TRL)模型在知识图形完成上显示竞争性能,但实体的嵌入物之间没有参数共享,并且实体之间的连接较弱。因此,提出了基于邻居聚合的表示学习(NARL)模型,其将实体的邻居中的信息编码到其嵌入中。然而,现有的NARL模型只能利用一个跳邻居,忽略多跳邻居中的信息,或者通过分层邻居聚合利用多跳邻居,销毁多跳邻居的完整性。在本文中,我们提出了一个名为RMNA的NARL模型,它通过规则挖掘算法获得和过滤HOWN规则,并使用所选的喇叭规则将有价值的多跳邻居转换为一个跳邻居,因此,有价值的信息中的信息通过聚合这些单跳邻居可以完全利用跳跃邻居。在实验中,我们将RMNA与最先进的TRL模型和NARL型号进行比较。结果表明,RMNA具有竞争性表现。
translated by 谷歌翻译
归纳链路预测(ILP)是考虑到新兴知识图(kgs)中未见实体的联系,考虑到KGS的发展性质。一个更具挑战性的场景是,新兴的kg仅由看不见的实体组成,被称为已断开新兴kgs(DEKGS)。 DEKGS的现有研究仅专注于预测封闭链接,即预测新兴KG内部的联系。到目前为止,先前的工作尚未对将进化信息从原始KG到DEKG进行进化信息。为了填补空白,我们提出了一个名为DEKG-ILP的新型模型(由以下两个组成部分组成的dekg-ilp(断开新兴知识图形的归纳链路预测)。 (1)模块CLRM(基于对比的关系特定特征特征建模)是为了提取基于全球关系的语义特征而开发的,它们在原始KGS和DEKGS之间以新颖的采样策略共享。 (2)提出了模块GSM(基于GNN的子图建模),以提取围绕KGS中每个链接的局部子图拓扑信息。在几个基准数据集上进行的广泛实验表明,与最新方法相比,DEKG-ILP具有明显的性能改进,用于封闭和桥接链路预测。源代码可在线获得。
translated by 谷歌翻译
知识库及其以知识图(kg)形式的表示自然是不完整的。由于科学和工业应用已广泛采用,因此对完成信息的解决方案的需求很高。最近的一些作品通过学习实体和关系的嵌入来应对这一挑战,然后雇用它们来预测实体之间的新关系。尽管它们加重了,但大多数方法仅着眼于学习嵌入的当地邻居。结果,他们可能无法通过忽视长期依赖性和实体语义的传播来捕获KGS的上下文信息。在此手稿中,我们提出{\ ae} MP(来自多种模式的注意力嵌入),这是一种通过以下方式学习上下文化表示的新颖模型:实体的本地语义,同时着眼于邻里的各个方面; (ii)通过利用道路及其之间的关系来捕获语义上下文。我们的经验发现吸引了人们对注意力机制如何改善实体的上下文表示以及结合实体和语义路径环境如何改善实体的一般表示和关系预测的见解。几个大知识图基准的实验结果表明,{\ ae} MP的表现要优于最先进的关系预测方法。
translated by 谷歌翻译