现有的置换不变方法可以根据聚合范围(即全球聚合和局部局部)分为两类。尽管全局聚合方法,e。 g。,PointNet和Deep Sets,参与更简单的结构,它们的性能比PointNet ++和Point Transformer等局部聚合较差。如果存在具有简单结构,竞争性能甚至更少参数的全球聚合方法,那么它仍然是一个空旷的问题。在本文中,我们提出了一个基于双MLP点产品的新型全局聚合置换不变的网络,称为DUMLP-PIN,该网络能够用于提取集合输入的功能,包括无序或非结构的像素,属性,atter和Point和Point和Point云数据集。我们严格地证明,DUMLP-PIN实现的任何置换不变函数都可以通过点产生方式分解为两个或多个置换量的函数,因为给定输入集的基数大于阈值。我们还表明,在某些条件下,可以将DUMLP针视为具有强大限制的深度集。 DUMLP-PIN的性能在具有不同数据集的几个不同任务上进行了评估。实验结果表明,我们的DUMLP-PIN在像素集和属性集的两个分类问题上取得了最佳结果。在点云分类和零件分割上,DUMLP-PIN的准确性非常接近SO-FAR最佳表现最佳的本地聚合方法,仅差异1-2%,而所需参数的数量显着降低了分类分别超过85%和69%的分割。该代码可在https://github.com/jaronthu/dumlp-pin上公开获得。
translated by 谷歌翻译
The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer(PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation, semantic segmentation and normal estimation tasks.
translated by 谷歌翻译
Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.
translated by 谷歌翻译
Many machine learning tasks such as multiple instance learning, 3D shape recognition and fewshot image classification are defined on sets of instances. Since solutions to such problems do not depend on the order of elements of the set, models used to address them should be permutation invariant. We present an attention-based neural network module, the Set Transformer, specifically designed to model interactions among elements in the input set. The model consists of an encoder and a decoder, both of which rely on attention mechanisms. In an effort to reduce computational complexity, we introduce an attention scheme inspired by inducing point methods from sparse Gaussian process literature. It reduces computation time of self-attention from quadratic to linear in the number of elements in the set. We show that our model is theoretically attractive and we evaluate it on a range of tasks, demonstrating increased performance compared to recent methods for set-structured data.
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
We study the problem of designing models for machine learning tasks defined on sets. In contrast to traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets that are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics [1], to anomaly detection in piezometer data of embankment dams [2], to cosmology [3,4]. Our main theorem characterizes the permutation invariant functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We also derive the necessary and sufficient conditions for permutation equivariance in deep models. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
Point cloud analysis is challenging due to irregularity and unordered data structure. To capture the 3D geometries, prior works mainly rely on exploring sophisticated local geometric extractors using convolution, graph, or attention mechanisms. These methods, however, incur unfavorable latency during inference, and the performance saturates over the past few years. In this paper, we present a novel perspective on this task. We notice that detailed local geometrical information probably is not the key to point cloud analysis -- we introduce a pure residual MLP network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively. Equipped with a proposed lightweight geometric affine module, PointMLP delivers the new state-of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy. We emphasize that PointMLP achieves this strong performance without any sophisticated operations, hence leading to a superior inference speed. Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark. We hope our PointMLP may help the community towards a better understanding of point cloud analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
变压器在各种计算机视觉地区发挥着越来越重要的作用,并且在点云分析中也取得了显着的成就。由于它们主要专注于点亮变压器,因此本文提出了一种自适应通道编码变压器。具体地,被设计为对频道的通道卷积旨在对信道进行编码。它可以通过捕获坐标和特征之间的潜在关系来编码特征通道。与简单地为每个通道分配注意重量相比,我们的方法旨在自适应地对信道进行编码。此外,我们的网络采用了邻域搜索方法的低级和高级双语义接收领域,以提高性能。广泛的实验表明,我们的方法优于三个基准数据集的最先进的点云分类和分段方法。
translated by 谷歌翻译
MLP-MIXER新出现为反对CNNS和变压器领域的新挑战者。尽管与变压器相比,尽管其相比,频道混合MLP和令牌混合MLP的概念可以在视觉识别任务中实现明显的性能。与图像不同,点云本身稀疏,无序和不规则,这限制了MLP-MILER用于点云理解的直接使用。在本文中,我们提出了一种通用点集运算符,其促进非结构化3D点之间的信息共享。通过简单地用SoftMax函数替换令牌混合的MLP,PointMixer可以在点集之间“混合”功能。通过这样做,可以在网络中广泛地使用PointMixer作为设定间混合,内部混合和金字塔混合。广泛的实验表明了对基于变压器的方法的语义分割,分类和点重建中的引光器竞争或卓越的性能。
translated by 谷歌翻译
In this work, we present Point Transformer, a deep neural network that operates directly on unordered and unstructured point sets. We design Point Transformer to extract local and global features and relate both representations by introducing the local-global attention mechanism, which aims to capture spatial point relations and shape information. For that purpose, we propose SortNet, as part of the Point Transformer, which induces input permutation invariance by selecting points based on a learned score. The output of Point Transformer is a sorted and permutation invariant feature list that can directly be incorporated into common computer vision applications. We evaluate our approach on standard classification and part segmentation benchmarks to demonstrate competitive results compared to the prior work. Code is publicly available at: https://github.com/engelnico/point-transformer INDEX TERMS 3D point processing, Artificial neural networks, Computer vision, Feedforward neural networks, Transformer
translated by 谷歌翻译
随着激光雷达传感器和3D视觉摄像头的扩散,3D点云分析近年来引起了重大关注。经过先驱工作点的成功后,基于深度学习的方法越来越多地应用于各种任务,包括3D点云分段和3D对象分类。在本文中,我们提出了一种新颖的3D点云学习网络,通过选择性地执行具有动态池的邻域特征聚合和注意机制来提出作为动态点特征聚合网络(DPFA-NET)。 DPFA-Net有两个可用于三维云的语义分割和分类的变体。作为DPFA-NET的核心模块,我们提出了一个特征聚合层,其中每个点的动态邻域的特征通过自我注意机制聚合。与其他分割模型相比,来自固定邻域的聚合特征,我们的方法可以在不同层中聚合来自不同邻居的特征,在不同层中为查询点提供更具选择性和更广泛的视图,并更多地关注本地邻域中的相关特征。此外,为了进一步提高所提出的语义分割模型的性能,我们提出了两种新方法,即两级BF-Net和BF-Rengralization来利用背景前台信息。实验结果表明,所提出的DPFA-Net在S3DIS数据集上实现了最先进的整体精度分数,在S3DIS数据集上进行了语义分割,并在不同的语义分割,部分分割和3D对象分类中提供始终如一的令人满意的性能。与其他方法相比,它也在计算上更有效。
translated by 谷歌翻译
点云学习界见证了从CNN到变形金刚的模型转移,纯变压器架构在主要学习基准上实现了最高精度。然而,现有的点变压器是计算昂贵的,因为它们需要产生大的注意图,其相对于输入大小具有二次复杂度(空间和时间)。为了解决这种缺点,我们介绍补丁注意(PAT),以便自适应地学习计算注意力地图的更小的基础。通过对这些基础的加权求和,PAT仅捕获全局形状上下文,而且还可以实现输入大小的线性复杂性。此外,我们提出了一种轻量级的多尺度关注(MST)块来构建不同尺度特征的关注,提供具有多尺度特征的模型。我们配备了PAT和MST,我们构建了我们的神经结构,称为PatchFormer,将两个模块集成到Point云学习的联合框架中。广泛的实验表明,我们的网络对一般点云学习任务的可比准确性具有9.2倍的速度高于先前的点变压器。
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
我们提出了一种基于注意力的新型机制,可以学习用于点云处理任务的增强点特征,例如分类和分割。与先前的作品不同,该作品经过培训以优化预选的一组注意点的权重,我们的方法学会了找到最佳的注意点,以最大程度地提高特定任务的性能,例如点云分类。重要的是,我们主张使用单个注意点来促进语义理解在点特征学习中。具体而言,我们制定了一种新的简单卷积,该卷积结合了输入点及其相应学习的注意点或膝盖的卷积特征。我们的注意机制可以轻松地纳入最新的点云分类和分割网络中。对诸如ModelNet40,ShapenetPart和S3DIS之类的常见基准测试的广泛实验都表明,我们的支持LAP的网络始终优于各自的原始网络,以及其他竞争性替代方案,这些替代方案在我们的膝盖下采用了多个注意力框架。
translated by 谷歌翻译
置换不变的神经网络是从集合进行预测的有前途的工具。但是,我们表明,现有的置换式体系结构,深度集和固定的变压器可能会在深度时消失或爆炸。此外,层规范(SET变压器中选择的归一化)可能会通过删除对预测有用的信息来损害性能。为了解决这些问题,我们介绍了白皮剩余连接的干净路径原理,并开发了设置规范,这是针对集合量身定制的标准化。有了这些,我们构建了Deep Sets ++和SET Transformer ++,该模型比其在各种任务套件上的原始配对品具有可比性或更好的性能。我们还引入了Flow-RBC,这是一种新的单细胞数据集和置换不变预测的现实应用。我们在此处开放数据和代码:https://github.com/rajesh-lab/deep_permunt_invariant。
translated by 谷歌翻译
我们提出CPT:卷积点变压器 - 一种用于处理3D点云数据的非结构化性质的新型深度学习架构。 CPT是对现有关注的卷曲神经网络以及以前的3D点云处理变压器的改进。由于其在创建基于新颖的基于注意力的点集合嵌入通过制作用于处理动态局部点设定的邻域的卷积投影层的嵌入来实现这一壮举。结果点设置嵌入对输入点的排列是强大的。我们的小说CPT块在网络结构中通过动态图计算获得的本地邻居构建。它是完全可差异的,可以像卷积层一样堆叠,以学习点的全局属性。我们评估我们的模型在ModelNet40,ShapEnet​​部分分割和S3DIS 3D室内场景语义分割数据集等标准基准数据集上,以显示我们的模型可以用作各种点云处理任务的有效骨干,与现有状态相比 - 艺术方法。
translated by 谷歌翻译
在本文中,我们涉及在2D点云数据上的旋转设备。我们描述了一种特定的功能,能够近似任何连续旋转等级和置换不变函数。基于这一结果,我们提出了一种新的神经网络架构,用于处理2D点云,我们证明其普遍性地用于近似呈现这些对称的功能。我们还展示了如何扩展架构以接受一组2D-2D对应关系作为Indata,同时保持类似的标准性属性。关于立体视觉中必需基质的估计的实验。
translated by 谷歌翻译
Unlike images which are represented in regular dense grids, 3D point clouds are irregular and unordered, hence applying convolution on them can be difficult. In this paper, we extend the dynamic filter to a new convolution operation, named PointConv. PointConv can be applied on point clouds to build deep convolutional networks. We treat convolution kernels as nonlinear functions of the local coordinates of 3D points comprised of weight and density functions. With respect to a given point, the weight functions are learned with multi-layer perceptron networks and density functions through kernel density estimation. The most important contribution of this work is a novel reformulation proposed for efficiently computing the weight functions, which allowed us to dramatically scale up the network and significantly improve its performance. The learned convolution kernel can be used to compute translation-invariant and permutation-invariant convolution on any point set in the 3D space. Besides, PointConv can also be used as deconvolution operators to propagate features from a subsampled point cloud back to its original resolution. Experiments on ModelNet40, ShapeNet, and ScanNet show that deep convolutional neural networks built on PointConv are able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds. Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure.
translated by 谷歌翻译