Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of wellannotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect 2806 aerial images from different sensors and platforms. Each image is of the size about 4000 × 4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using 15 common object categories. The fully annotated DOTA images contains 188, 282 instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral. To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
translated by 谷歌翻译
在过去的十年中,由于航空图像引起的物体的规模和取向的巨大变化,对象检测已经实现了自然图像中的显着进展,而不是在空中图像中。更重要的是,缺乏大规模基准已成为在航拍图像(ODAI)中对物体检测发展的主要障碍。在本文中,我们在航空图像(DotA)中的物体检测和用于ODAI的综合基线的大规模数据集。所提出的DOTA数据集包含1,793,658个对象实例,18个类别的面向边界盒注释从11,268个航拍图像中收集。基于该大规模和注释的数据集,我们构建了具有超过70个配置的10个最先进算法的基线,其中已经评估了每个模型的速度和精度性能。此外,我们为ODAI提供了一个代码库,并建立一个评估不同算法的网站。以前在Dota上运行的挑战吸引了全球1300多队。我们认为,扩大的大型DOTA数据集,广泛的基线,代码库和挑战可以促进鲁棒算法的设计和对空中图像对象检测问题的可再现研究。
translated by 谷歌翻译
定向对象检测是在空中图像中的具有挑战性的任务,因为航空图像中的物体以任意的方向显示并且经常密集包装。主流探测器使用五个参数或八个主角表示描述了旋转对象,这遭受了定向对象定义的表示模糊性。在本文中,我们提出了一种基于平行四边形的面积比的新型表示方法,称为ARP。具体地,ARP回归定向对象的最小边界矩形和三个面积比。三个面积比包括指向物体与最小的外接矩形的面积比和两个平行四边形到最小的矩形。它简化了偏移学习,消除了面向对象的角度周期性或标签点序列的问题。为了进一步弥补近横向物体的混淆问题,采用对象和其最小的外缘矩形的面积比来指导每个物体的水平或定向检测的选择。此外,使用水平边界盒和三个面积比的旋转高效交叉点(R-EIOU)丢失和三个面积比旨在优化用于旋转对象的边界盒回归。遥感数据集的实验结果,包括HRSC2016,DOTA和UCAS-AOD,表明我们的方法达到了卓越的检测性能,而不是许多最先进的方法。
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
在对象检测中,广泛采用了非最大抑制(NMS)方法以删除检测到的密集盒的水平重复,以生成最终的对象实例。但是,由于密集检测框的质量降低,而不是对上下文信息的明确探索,因此通过简单的交叉联盟(IOU)指标的现有NMS方法往往在多面向和长尺寸的对象检测方面表现不佳。通过重复删除与常规NMS方法区分,我们提出了一个新的图形融合网络,称为GFNET,用于多个方向的对象检测。我们的GFNET是可扩展的和适应性熔断的密集检测框,可检测更准确和整体的多个方向对象实例。具体而言,我们首先采用一种局部意识的聚类算法将密集检测框分组为不同的簇。我们将为属于一个集群的检测框构建一个实例子图。然后,我们通过图形卷积网络(GCN)提出一个基于图的融合网络,以学习推理并融合用于生成最终实例框的检测框。在公共可用多面向文本数据集(包括MSRA-TD500,ICDAR2015,ICDAR2017-MLT)和多方向对象数据集(DOTA)上进行广泛实验。
translated by 谷歌翻译
物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
航空图像中的微小对象检测(TOD)是具有挑战性的,因为一个小物体只包含几个像素。最先进的对象探测器由于缺乏判别特征的监督而无法为微小对象提供令人满意的结果。我们的主要观察结果是,联合度量(IOU)及其扩展的相交对微小物体的位置偏差非常敏感,这在基于锚固的探测器中使用时会大大恶化标签分配的质量。为了解决这个问题,我们提出了一种新的评估度量标准,称为标准化的Wasserstein距离(NWD)和一个新的基于排名的分配(RKA)策略,以进行微小对象检测。提出的NWD-RKA策略可以轻松地嵌入到各种基于锚的探测器中,以取代标准的基于阈值的检测器,从而大大改善了标签分配并为网络培训提供了足够的监督信息。在四个数据集中测试,NWD-RKA可以始终如一地提高微小的对象检测性能。此外,在空中图像(AI-TOD)数据集中观察到显着的嘈杂标签,我们有动力将其重新标记并释放AI-TOD-V2及其相应的基准。在AI-TOD-V2中,丢失的注释和位置错误问题得到了大大减轻,从而促进了更可靠的培训和验证过程。将NWD-RKA嵌入探测器中,检测性能比AI-TOD-V2上的最先进竞争对手提高了4.3个AP点。数据集,代码和更多可视化可在以下网址提供:https://chasel-tsui.g​​ithub.io/ai/ai-tod-v2/
translated by 谷歌翻译
卫星摄像机可以为大型区域提供连续观察,这对于许多遥感应用很重要。然而,由于对象的外观信息不足和缺乏高质量数据集,在卫星视频中实现移动对象检测和跟踪仍然具有挑战性。在本文中,我们首先构建一个具有丰富注释的大型卫星视频数据集,用于移动对象检测和跟踪的任务。该数据集由Jilin-1卫星星座收集,并由47个高质量视频组成,对象检测有1,646,038兴趣的情况和用于对象跟踪的3,711个轨迹。然后,我们引入运动建模基线,以提高检测速率并基于累积多帧差异和鲁棒矩阵完成来减少误报。最后,我们建立了第一个用于在卫星视频中移动对象检测和跟踪的公共基准,并广泛地评估在我们数据集上几种代表方法的性能。还提供了综合实验分析和富有魅力的结论。数据集可在https://github.com/qingyonghu/viso提供。
translated by 谷歌翻译
与通用物体相反,空中目标通常是非轴与具有杂乱的周围环境的任意取向对齐。与回归边界盒取向的主流化方法不同,本文通过利用自适应点表示,提出了一种有效的自适应点学习方法,可以利用自适应点表示来捕获任意定向的实例的几何信息。为此,提出了三个取向的转换功能,以便于准确方向进行分类和本地化。此外,我们提出了一种有效的质量评估和样本分配方案,用于学习在训练期间选择代表导向的检测点样本,能够捕获来自邻近物体或背景噪声的非轴对准特征。引入了空间约束以惩罚ROUST自适应学习的异常点。在包括DotA,HRSC2016,UCAS-AOD和Dior-R的四个具有挑战性的空中数据集上的实验结果证明了我们提出的方法的功效。源代码是可用的:https://github.com/liwentomng/orientedreppoints。
translated by 谷歌翻译
自动检测武器对于改善个人的安全性和福祉是重要的,仍然是由于各种尺寸,武器形状和外观,这是一项艰巨的任务。查看点变化和遮挡也是使这项任务更加困难的原因。此外,目前的物体检测算法处理矩形区域,但是一个细长和长的步枪可以真正地覆盖区域的一部分区域,其余部分可能包含未经紧的细节。为了克服这些问题,我们提出了一种用于定向意识武器检测的CNN架构,其提供具有改进的武器检测性能的面向边界框。所提出的模型不仅通过将角度作为分类问题的角度分成8个类而且提供方向,而是作为回归问题。对于培训我们的武器检测模型,包括总6400件武器图像的新数据集从网上收集,然后用面向定向的边界框手动注释。我们的数据集不仅提供导向的边界框作为地面真相,还提供了水平边界框。我们还以多种现代对象探测器提供我们的数据集,用于在该领域进一步研究。所提出的模型在该数据集上进行评估,并且与搁板对象检测器的比较分析产生了卓越的拟议模型的性能,以标准评估策略测量。数据集和模型实现在此链接上公开可用:https://bit.ly/2tyzicf。
translated by 谷歌翻译
TU Dresden www.cityscapes-dataset.net train/val -fine annotation -3475 images train -coarse annotation -20 000 images test -fine annotation -1525 images
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
空中无人机镜头的视觉检查是当今土地搜索和救援(SAR)运营的一个组成部分。由于此检查是对人类的缓慢而繁琐,令人疑惑的工作,我们提出了一种新颖的深入学习算法来自动化该航空人员检测(APD)任务。我们试验模型架构选择,在线数据增强,转移学习,图像平铺和其他几种技术,以提高我们方法的测试性能。我们将新型航空检验视网膜(空气)算法呈现为这些贡献的结合。空中探测器在精度(〜21个百分点增加)和速度方面,在常用的SAR测试数据上表现出最先进的性能。此外,我们为SAR任务中的APD问题提供了新的正式定义。也就是说,我们提出了一种新的评估方案,在现实世界SAR本地化要求方面排名探测器。最后,我们提出了一种用于稳健的新型后处理方法,近似对象定位:重叠边界框(MOB)算法的合并。在空中检测器中使用的最终处理阶段在真实的空中SAR任务面前显着提高了其性能和可用性。
translated by 谷歌翻译
近年来,将多光谱数据集成在对象检测中,尤其是可见的和红外图像。由于可见(RGB)和红外(IR)图像可以提供互补的信息来处理光变化,因此在许多领域中使用了配对图像,例如多光谱的行人检测,RGB-IR人群计数和RGB-IR显着对象检测。与天然RGB-IR图像相比,我们发现空中RGB-IR图像中的检测遭受跨模式弱的未对准问题,这些问题表现在同一物体的位置,大小和角度偏差。在本文中,我们主要解决了空中RGB-IR图像中跨模式弱未对准的挑战。具体而言,我们首先解释和分析了弱错位问题的原因。然后,我们提出了一个翻译尺度的反向对齐(TSRA)模块,以通过校准这两种方式的特征图来解决问题。该模块通过对齐过程预测了两个模式对象之间的偏差,并利用模态选择(MS)策略来提高对齐的性能。最后,基于TSRA模块的两流特征比对检测器(TSFADET)是为空中图像中的RGB-IR对象检测构建的。通过对公共无人机数据集进行的全面实验,我们验证我们的方法是否降低了交叉模式未对准的效果并实现了可靠的检测结果。
translated by 谷歌翻译
为了在商店中充分利用计算机视觉技术,需要考虑适合零售场景特征的实际需求。为了实现这一目标,我们介绍了联合零售数据集(Unitail),这是针对检测,阅读和匹配算法的产品的基本视觉任务的大规模基准。凭借注释的180万个四边形实例,该Unitail提供了一个检测数据集,以更好地对齐产品外观。此外,它提供了一个包含1454个产品类别,30k文本区域和21k转录的画廊风格的OCR数据集,以实现对产品的强大阅读并激励增强的产品匹配。除了使用各种最新技术对数据集进行基准测试外,我们还定制了一个新的检测器以进行产品检测,并提供了一个简单的基于OCR的匹配解决方案,以验证其有效性。
translated by 谷歌翻译
边界不连续性及其与最终检测度量的不一致是旋转检测回归设计的瓶颈。在本文中,我们提出了一种基于高斯Wasserstein距离的新型回归损失作为解决问题的基本方法。具体地,旋转边界盒被转换为2-D高斯分布,这使得能够通过梯度反向传播可以有效地学习的高斯Wassersein距离(GWD)来近似逼降旋转IOU诱导损失。 GWD仍然可以进行信息,即使在两个旋转边界盒之间没有重叠,通常是小对象检测的情况。由于其三种独特的特性,GWD也可以挽救解决边界不连续性和方形的问题,而不管如何定义边界框。使用不同探测器的五个数据集的实验显示了我们方法的有效性。代码在https://github.com/yangxue0827/rotationDetection提供。
translated by 谷歌翻译
由于鸟瞰视角的任意对象方向和复杂的背景,航空图像中的船舶检测仍然是一个活跃但具有挑战性的任务。大多数现有方法依赖于角度预测或预定义的锚盒,使这些方法对不稳定的角度回归和过度的超参数设置非常敏感。为了解决这些问题,我们用锚角和角度范例替换基于角的对象编码,并提出了一种部署中心的新型探测器,用于编码每个定向对象的四个中点,即MIDnet。 MIDNET设计用于增强船舶中点的对称可变形卷积,然后通过预测相应的离心移位和匹配半径来自适应地匹配相同的船的中心和中点。最后,提出了一种简洁的分析几何算法,以逐步优化中心和中点 - 明智地为建立精确定向的边界盒。在两艘公共船舶检测数据集,HRSC2016和FGSD2021,MIDNet通过实现90.52%和86.50%的AP来实现最先进的探测器。此外,MIDNET在DotA的船舶检测中获得竞争结果。
translated by 谷歌翻译
全球城市可免费获得大量的地理参考全景图像,以及各种各样的城市物体上的位置和元数据的详细地图。它们提供了有关城市物体的潜在信息来源,但是对象检测的手动注释是昂贵,费力和困难的。我们可以利用这种多媒体来源自动注释街道级图像作为手动标签的廉价替代品吗?使用Panorams框架,我们引入了一种方法,以根据城市上下文信息自动生成全景图像的边界框注释。遵循这种方法,我们仅以快速自动的方式从开放数据源中获得了大规模的(尽管嘈杂,但都嘈杂,但对城市数据集进行了注释。该数据集涵盖了阿姆斯特丹市,其中包括771,299张全景图像中22个对象类别的1400万个嘈杂的边界框注释。对于许多对象,可以从地理空间元数据(例如建筑价值,功能和平均表面积)获得进一步的细粒度信息。这样的信息将很难(即使不是不可能)单独根据图像来获取。为了进行详细评估,我们引入了一个有效的众包协议,用于在全景图像中进行边界框注释,我们将其部署以获取147,075个地面真实对象注释,用于7,348张图像的子集,Panorams-clean数据集。对于我们的Panorams-Noisy数据集,我们对噪声以及不同类型的噪声如何影响图像分类和对象检测性能提供了广泛的分析。我们可以公开提供数据集,全景噪声和全景清洁,基准和工具。
translated by 谷歌翻译
In this paper, we introduce a new large-scale object detection dataset, Objects365, which has 365 object categories over 600K training images. More than 10 million, high-quality bounding boxes are manually labeled through a three-step, carefully designed annotation pipeline. It is the largest object detection dataset (with full annotation) so far and establishes a more challenging benchmark for the community. Objects365 can serve as a better feature learning dataset for localization-sensitive tasks like object detection and semantic segmentation. The Objects365 pre-trained models significantly outperform ImageNet pre-trained models with 5.6 points gain (42 vs 36.4) based on the standard setting of 90K iterations on COCO benchmark. Even compared with much long training time like 540K iterations, our Objects365 pretrained model with 90K iterations still have 2.7 points gain (42 vs 39.3). Meanwhile, the finetuning time can be greatly reduced (up to 10 times) when reaching the same accuracy. Better generalization ability of Object365 has also been verified on CityPersons, VOC segmentation, and ADE tasks. The dataset as well as the pretrainedmodels have been released at www.objects365.org. * indicates equal contribution.
translated by 谷歌翻译