Patterns and textures are defining characteristics of many natural objects: a shirt can be striped, the wings of a butterfly can be veined, and the skin of an animal can be scaly. Aiming at supporting this analytical dimension in image understanding, we address the challenging problem of describing textures with semantic attributes. We identify a rich vocabulary of forty-seven texture terms and use them to describe a large dataset of patterns collected "in the wild". The resulting Describable Textures Dataset (DTD) is the basis to seek for the best texture representation for recognizing describable texture attributes in images. We port from object recognition to texture recognition the Improved Fisher Vector (IFV) and show that, surprisingly, it outperforms specialized texture descriptors not only on our problem, but also in established material recognition datasets. We also show that the describable attributes are excellent texture descriptors, transferring between datasets and tasks; in particular, combined with IFV, they significantly outperform the state-of-the-art by more than 8% on both FMD and KTH-TIPS-2b benchmarks. We also demonstrate that they produce intuitive descriptions of materials and Internet images.
translated by 谷歌翻译
场景分类已确定为一个具有挑战性的研究问题。与单个对象的图像相比,场景图像在语义上可能更为复杂和抽象。它们的差异主要在于识别的粒度水平。然而,图像识别是场景识别良好表现的关键支柱,因为从对象图像中获得的知识可用于准确识别场景。现有场景识别方法仅考虑场景的类别标签。但是,我们发现包含详细的本地描述的上下文信息也有助于允许场景识别模型更具歧视性。在本文中,我们旨在使用对象中编码的属性和类别标签信息来改善场景识别。基于属性和类别标签的互补性,我们提出了一个多任务属性识别识别(MASR)网络,该网络学习一个类别嵌入式,同时预测场景属性。属性采集和对象注释是乏味且耗时的任务。我们通过提出部分监督的注释策略来解决该问题,其中人类干预大大减少。该策略为现实世界情景提供了更具成本效益的解决方案,并且需要减少注释工作。此外,考虑到对象检测到的分数所指示的重要性水平,我们重新进行了权威预测。使用提出的方法,我们有效地注释了四个大型数据集的属性标签,并系统地研究场景和属性识别如何相互受益。实验结果表明,与最先进的方法相比
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
We study the problem of object recognition for categories for which we have no training examples, a task also called zero-data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.
translated by 谷歌翻译
The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
translated by 谷歌翻译
自我监督的视觉表示学习最近引起了重大的研究兴趣。虽然一种评估自我监督表示的常见方法是通过转移到各种下游任务,但我们研究了衡量其可解释性的问题,即了解原始表示中编码的语义。我们将后者提出为估计表示和手动标记概念空间之间的相互信息。为了量化这一点,我们介绍了一个解码瓶颈:必须通过简单的预测变量捕获信息,将概念映射到表示空间中的簇。我们称之为反向线性探测的方法为表示表示的语义敏感。该措施还能够检测出表示何时包含概念的组合(例如“红色苹果”),而不仅仅是单个属性(独立的“红色”和“苹果”)。最后,我们建议使用监督分类器自动标记大型数据集,以丰富用于探测的概念的空间。我们使用我们的方法来评估大量的自我监督表示形式,通过解释性对它们进行排名,并通过线性探针与标准评估相比出现的差异,并讨论了一些定性的见解。代码为:{\ Scriptsize {\ url {https://github.com/iro-cp/ssl-qrp}}}}}。
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
卷积神经网络已在图像分类方面取得了成功的结果,从而实现了超过人类水平的实时结果。但是,纹理图像仍然对这些模型构成一些挑战,例如,在出现这些图像,高层间相似性,没有代表对象的全局观点的几个问题中,培训的数据可用性有限,并且其他。在这种情况下,本文的重点是提高纹理分类中卷积神经网络的准确性。这是通过从验证的神经网络的多个卷积层中提取特征并使用Fisher载体聚集此类特征来完成的。使用较早卷积层的特征的原因是获得了较少域的信息。我们验证方法对基准数据集的纹理分类以及巴西植物物种识别的实际任务的有效性。在这两种情况下,在多层上计算出的Fisher矢量都优于制作方法,证实早期卷积层提供了有关分类纹理图像的重要信息。
translated by 谷歌翻译
This paper reviews the recent progress of remote sensing image scene classification, proposes a large-scale benchmark dataset, and evaluates a number of state-of-the-art methods using the proposed dataset.
translated by 谷歌翻译
细粒度的图像分析(FGIA)是计算机视觉和模式识别中的长期和基本问题,并为一组多种现实世界应用提供了基础。 FGIA的任务是从属类别分析视觉物体,例如汽车或汽车型号的种类。细粒度分析中固有的小阶级和阶级阶级内变异使其成为一个具有挑战性的问题。利用深度学习的进步,近年来,我们在深入学习动力的FGIA中见证了显着进展。在本文中,我们对这些进展的系统进行了系统的调查,我们试图通过巩固两个基本的细粒度研究领域 - 细粒度的图像识别和细粒度的图像检索来重新定义和扩大FGIA领域。此外,我们还审查了FGIA的其他关键问题,例如公开可用的基准数据集和相关域的特定于应用程序。我们通过突出几个研究方向和开放问题,从社区中突出了几个研究方向和开放问题。
translated by 谷歌翻译
We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following three principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we develop a training procedure, based on a new weakly supervised ranking loss, to learn parameters of the architecture in an end-to-end manner from images depicting the same places over time downloaded from Google Street View Time Machine. Finally, we show that the proposed architecture significantly outperforms non-learnt image representations and off-the-shelf CNN descriptors on two challenging place recognition benchmarks, and improves over current stateof-the-art compact image representations on standard image retrieval benchmarks.
translated by 谷歌翻译
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods. Additionally, we study a finer-grained scene representation to detect scenes embedded inside of larger scenes.
translated by 谷歌翻译
A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.
translated by 谷歌翻译
虽然最近的图像理解的研究经常集中在识别更多类型的对象上,但了解更多关于对象的信息就是重要的。识别对象零件和属性已经广泛研究,但由于提供了用于监督的详细对象注释的高成本,所以这种概念的学习大型空间仍然难以实现。本文的关键贡献是一种从通过查询Web搜索引擎获得的图像自动学习物体的可行性部分的算法。关键挑战是注释中的高噪音;为了解决它,我们提出了一个新的统一嵌入空间,其中物体的外观和几何形状均匀地表示。几何关系通过丰富的非对中级锚点以柔和的方式诱导,弥合语义和非语义部件之间的差距。我们还表明,由此产生的嵌入提供了一种视觉上直观的机制来导航学习的概念及其对应的图像。
translated by 谷歌翻译
尽管提取了通过手工制作和基于学习的描述符实现的本地特征的进步,但它们仍然受到不符合非刚性转换的不变性的限制。在本文中,我们提出了一种计算来自静止图像的特征的新方法,该特征对于非刚性变形稳健,以避免匹配可变形表面和物体的问题。我们的变形感知当地描述符,命名优惠,利用极性采样和空间变压器翘曲,以提供旋转,尺度和图像变形的不变性。我们通过将等距非刚性变形应用于模拟环境中的对象作为指导来提供高度辨别的本地特征来培训模型架构端到端。该实验表明,我们的方法优于静止图像中的实际和现实合成可变形对象的不同数据集中的最先进的手工制作,基于学习的图像和RGB-D描述符。描述符的源代码和培训模型在https://www.verlab.dcc.ufmg.br/descriptors/neUrips2021上公开可用。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
In this paper we address the problem of automatically recognizing pictured dishes. To this end, we introduce a novel method to mine discriminative parts using Random Forests (rf), which allows us to mine for parts simultaneously for all classes and to share knowledge among them. To improve efficiency of mining and classification, we only consider patches that are aligned with image superpixels, which we call components. To measure the performance of our rf component mining for food recognition, we introduce a novel and challenging dataset of 101 food categories, with 101'000 images. With an average accuracy of 50.76%, our model outperforms alternative classification methods except for cnn, including svm classification on Improved Fisher Vectors and existing discriminative part-mining algorithms by 11.88% and 8.13%, respectively. On the challenging mit-Indoor dataset, our method compares nicely to other s-o-a component-based classification methods.
translated by 谷歌翻译
We propose bilinear models, a recognition architecture that consists of two feature extractors whose outputs are multiplied using outer product at each location of the image and pooled to obtain an image descriptor. This architecture can model local pairwise feature interactions in a translationally invariant manner which is particularly useful for fine-grained categorization. It also generalizes various orderless texture descriptors such as the Fisher vector, VLAD and O2P. We present experiments with bilinear models where the feature extractors are based on convolutional neural networks. The bilinear form simplifies gradient computation and allows end-to-end training of both networks using image labels only. Using networks initialized from the ImageNet dataset followed by domain specific fine-tuning we obtain 84.1% accuracy of the CUB-200-2011 dataset requiring only category labels at training time. We present experiments and visualizations that analyze the effects of fine-tuning and the choice two networks on the speed and accuracy of the models. Results show that the architecture compares favorably to the existing state of the art on a number of fine-grained datasets while being substantially simpler and easier to train. Moreover, our most accurate model is fairly efficient running at 8 frames/sec on a NVIDIA Tesla K40 GPU.
translated by 谷歌翻译
We develop and demonstrate automatic image description methods using a large captioned photo collection. One contribution is our technique for the automatic collection of this new dataset -performing a huge number of Flickr queries and then filtering the noisy results down to 1 million images with associated visually relevant captions. Such a collection allows us to approach the extremely challenging problem of description generation using relatively simple non-parametric methods and produces surprisingly effective results. We also develop methods incorporating many state of the art, but fairly noisy, estimates of image content to produce even more pleasing results. Finally we introduce a new objective performance measure for image captioning.
translated by 谷歌翻译
While 3D object representations are being revived in the context of multi-view object class detection and scene understanding, they have not yet attained wide-spread use in fine-grained categorization. State-of-the-art approaches achieve remarkable performance when training data is plentiful, but they are typically tied to flat, 2D representations that model objects as a collection of unconnected views, limiting their ability to generalize across viewpoints.In this paper, we therefore lift two state-of-the-art 2D object representations to 3D, on the level of both local feature appearance and location. In extensive experiments on existing and newly proposed datasets, we show our 3D object representations outperform their state-of-the-art 2D counterparts for fine-grained categorization and demonstrate their efficacy for estimating 3D geometry from images via ultrawide baseline matching and 3D reconstruction.
translated by 谷歌翻译