随着深度学习的进步,演讲者的验证取得了很高的准确性,并且在我们日常生活中的许多场景中,尤其是Web服务市场不断增长的一种生物识别验证选项,成为一种生物识别验证选项。与传统密码相比,“人声密码”更加方便,因为它们可以减轻人们记住不同密码的记忆。但是,新的机器学习攻击使这些语音身份验证系统处于危险之中。没有强大的安全保证,攻击者可以通过欺骗基于深神经网络(DNN)的语音识别模型来访问合法用户的Web帐户。在本文中,我们证明了对语音身份验证系统的易于实现的数据中毒攻击,这几乎无法通过现有的防御机制来捕获。因此,我们提出了一种更强大的防御方法,称为“卫报”,该方法是基于卷积神经网络的歧视者。监护人歧视者整合了一系列新型技术,包括减少偏见,输入增强和集成学习。我们的方法能够将约95%的攻击帐户与普通帐户区分开,这比仅准确性60%的现有方法更有效。
translated by 谷歌翻译
由于使用语音处理系统(VPS)在日常生活中继续变得更加普遍,通过增加商业语音识别设备等应用以及主要文本到语音软件,因此对这些系统的攻击越来越复杂,各种各样的,不断发展。随着VPS的用例快速发展到新的空间和目的,对隐私的潜在后果越来越危险。此外,不断增长的数量和越来越多的空中攻击的实用性使系统失败更可能。在本文中,我们将识别和分类对语音处理系统的独特攻击的安排。多年来,研究已经从专业,未标准的攻击中迁移,导致系统的故障以及拒绝服务更加普遍的目标攻击,这些攻击可以强迫对手控制的结果。目前和最常用的机器学习系统和深神经网络在现代语音处理系统的核心内部建立,重点是性能和可扩展性而不是安全性。因此,我们对我们来重新评估发展语音处理景观并确定当前攻击和防御的状态,以便我们可能会建议未来的发展和理论改进。
translated by 谷歌翻译
Keyword spotting (KWS) based on deep neural networks (DNNs) has achieved massive success in voice control scenarios. However, training of such DNN-based KWS systems often requires significant data and hardware resources. Manufacturers often entrust this process to a third-party platform. This makes the training process uncontrollable, where attackers can implant backdoors in the model by manipulating third-party training data. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Experimental results demonstrated that VSVC is feasible to achieve an average attack success rate close to 97% in four victim models when poisoning less than 1% of the training data.
translated by 谷歌翻译
在过去的几十年中,人工智能的兴起使我们有能力解决日常生活中最具挑战性的问题,例如癌症的预测和自主航行。但是,如果不保护对抗性攻击,这些应用程序可能不会可靠。此外,最近的作品表明,某些对抗性示例可以在不同的模型中转移。因此,至关重要的是避免通过抵抗对抗性操纵的强大模型进行这种可传递性。在本文中,我们提出了一种基于特征随机化的方法,该方法抵抗了八次针对测试阶段深度学习模型的对抗性攻击。我们的新方法包括改变目标网络分类器中的训练策略并选择随机特征样本。我们认为攻击者具有有限的知识和半知识条件,以进行最普遍的对抗性攻击。我们使用包括现实和合成攻击的众所周知的UNSW-NB15数据集评估了方法的鲁棒性。之后,我们证明我们的策略优于现有的最新方法,例如最强大的攻击,包括针对特定的对抗性攻击进行微调网络模型。最后,我们的实验结果表明,我们的方法可以确保目标网络并抵抗对抗性攻击的转移性超过60%。
translated by 谷歌翻译
对抗商业黑匣子语音平台的对抗攻击,包括云语音API和语音控制设备,直到近年来接受了很少的关注。目前的“黑匣子”攻击所有严重依赖于预测/置信度评分的知识,以加工有效的对抗示例,这可以通过服务提供商直观地捍卫,而不返回这些消息。在本文中,我们提出了在更实用和严格的情况下提出了两种新的对抗攻击。对于商业云演讲API,我们提出了一个决定的黑匣子逆势攻击,这些攻击是唯一的最终决定。在偶变中,我们将决策的AE发电作为一个不连续的大规模全局优化问题,并通过自适应地将该复杂问题自适应地分解成一组子问题并协同优化每个问题来解决它。我们的春天是一种齐全的所有方法,它在一个广泛的流行语音和扬声器识别API,包括谷歌,阿里巴巴,微软,腾讯,达到100%的攻击攻击速度100%的攻击率。 iflytek,和景东,表现出最先进的黑箱攻击。对于商业语音控制设备,我们提出了Ni-Occam,第一个非交互式物理对手攻击,而对手不需要查询Oracle并且无法访问其内部信息和培训数据。我们将对抗性攻击与模型反演攻击相结合,从而产生具有高可转换性的物理有效的音频AE,而无需与目标设备的任何交互。我们的实验结果表明,NI-Occam可以成功欺骗苹果Siri,Microsoft Cortana,Google Assistant,Iflytek和Amazon Echo,平均SRO为52%和SNR为9.65dB,对抗语音控制设备的非交互式物理攻击。
translated by 谷歌翻译
Speech-centric machine learning systems have revolutionized many leading domains ranging from transportation and healthcare to education and defense, profoundly changing how people live, work, and interact with each other. However, recent studies have demonstrated that many speech-centric ML systems may need to be considered more trustworthy for broader deployment. Specifically, concerns over privacy breaches, discriminating performance, and vulnerability to adversarial attacks have all been discovered in ML research fields. In order to address the above challenges and risks, a significant number of efforts have been made to ensure these ML systems are trustworthy, especially private, safe, and fair. In this paper, we conduct the first comprehensive survey on speech-centric trustworthy ML topics related to privacy, safety, and fairness. In addition to serving as a summary report for the research community, we point out several promising future research directions to inspire the researchers who wish to explore further in this area.
translated by 谷歌翻译
随着最近自动驾驶的进步,语音控制系统越来越多地被用作人车相互作用方法。该技术使驱动程序能够使用语音命令来控制车辆,并将在高级驾驶员辅助系统(ADA)中使用。前工作表明,Siri,Alexa和Cortana非常容易受到听不及的指挥攻击。这可以扩展到现实世界应用中的ADA,并且由于麦克风非线性,难以检测这种听不到的指挥威胁。在本文中,我们旨在通过使用相机视图来开发更实用的解决方案,以防御ADA通过多传感器检测其环境的声明命令攻击。为此,我们提出了一种新的多模式深度学习分类系统,以防御听不及的指挥攻击。我们的实验结果证实了建议的防御方法的可行性,最佳分类精度达到89.2%。代码是在https://github.com/itseg-mq/sensor-fusion-against-voiceCommand-attacks上获得的。
translated by 谷歌翻译
计算能力和大型培训数据集的可用性增加,机器学习的成功助长了。假设它充分代表了在测试时遇到的数据,则使用培训数据来学习新模型或更新现有模型。这种假设受到中毒威胁的挑战,这种攻击会操纵训练数据,以损害模型在测试时的表现。尽管中毒已被认为是行业应用中的相关威胁,到目前为止,已经提出了各种不同的攻击和防御措施,但对该领域的完整系统化和批判性审查仍然缺失。在这项调查中,我们在机器学习中提供了中毒攻击和防御措施的全面系统化,审查了过去15年中该领域发表的100多篇论文。我们首先对当前的威胁模型和攻击进行分类,然后相应地组织现有防御。虽然我们主要关注计算机视觉应用程序,但我们认为我们的系统化还包括其他数据模式的最新攻击和防御。最后,我们讨论了中毒研究的现有资源,并阐明了当前的局限性和该研究领域的开放研究问题。
translated by 谷歌翻译
In this paper, we propose dictionary attacks against speaker verification - a novel attack vector that aims to match a large fraction of speaker population by chance. We introduce a generic formulation of the attack that can be used with various speech representations and threat models. The attacker uses adversarial optimization to maximize raw similarity of speaker embeddings between a seed speech sample and a proxy population. The resulting master voice successfully matches a non-trivial fraction of people in an unknown population. Adversarial waveforms obtained with our approach can match on average 69% of females and 38% of males enrolled in the target system at a strict decision threshold calibrated to yield false alarm rate of 1%. By using the attack with a black-box voice cloning system, we obtain master voices that are effective in the most challenging conditions and transferable between speaker encoders. We also show that, combined with multiple attempts, this attack opens even more to serious issues on the security of these systems.
translated by 谷歌翻译
由于它们在各个域中的大量成功,深入的学习技术越来越多地用于设计网络入侵检测解决方案,该解决方案检测和减轻具有高精度检测速率和最小特征工程的未知和已知的攻击。但是,已经发现,深度学习模型容易受到可以误导模型的数据实例,以使所谓的分类决策不正确(对抗示例)。此类漏洞允许攻击者通过向恶意流量添加小的狡猾扰动来逃避检测并扰乱系统的关键功能。在计算机视觉域中广泛研究了深度对抗学习的问题;但是,它仍然是网络安全应用中的开放研究领域。因此,本调查探讨了在网络入侵检测领域采用对抗机器学习的不同方面的研究,以便为潜在解决方案提供方向。首先,调查研究基于它们对产生对抗性实例的贡献来分类,评估ML的NID对逆势示例的鲁棒性,并捍卫这些模型的这种攻击。其次,我们突出了调查研究中确定的特征。此外,我们讨论了现有的通用对抗攻击对NIDS领域的适用性,启动拟议攻击在现实世界方案中的可行性以及现有缓解解决方案的局限性。
translated by 谷歌翻译
机器学习是一个人工智能(AI)的领域,对于几个关键系统来说变得至关重要,使其成为威胁参与者的良好目标。威胁参与者利用不同的策略,技术和程序(TTP),以防止机器学习(ML)系统的机密性,完整性和可用性。在ML周期期间,他们将对抗性TTP利用为毒数据和基于ML ML的系统。近年来,已经为传统系统提出了多种安全惯例,但它们不足以应对基于ML的系统的性质。在本文中,我们对针对基于ML的系统的威胁进行了实证研究,旨在了解和表征ML威胁的性质并确定常见的缓解策略。该研究基于MITER的ATLAS数据库,AI事件数据库和文献的89个现实世界ML攻击方案。从GitHub搜索和Python包装咨询数据库中的854毫升存储库,根据其声誉选择。 AI事件数据库和文献的攻击用于识别Atlas中未记录的漏洞和新类型的威胁。结果表明,卷积神经网络是攻击情景中最有针对性的模型之一。最大漏洞突出的ML存储库包括TensorFlow,OpenCV和笔记本。在本文中,我们还报告了研究的ML存储库中最常见的漏洞,最有针对性的ML阶段和模型,是ML阶段和攻击方案中最常用的TTP。对于红色/蓝色团队,该信息尤其重要,以更好地进行攻击/防御,从业人员在ML开发过程中防止威胁以及研究人员开发有效的防御机制。
translated by 谷歌翻译
随着数字时代的出现,由于技术进步,每天的任务都是自动化的。但是,技术尚未为人们提供足够的工具和保障措施。随着互联网连接全球越来越多的设备,确保连接设备的问题以均匀的螺旋速率增长。数据盗窃,身份盗窃,欺诈交易,密码妥协和系统漏洞正在成为常规的日常新闻。最近的人工智能进步引起了网络攻击的激烈威胁。 AI几乎应用于不同科学和工程的每个领域。 AI的干预不仅可以使特定任务自动化,而且可以提高效率。因此,很明显,如此美味的传播对网络犯罪分子来说是非常开胃的。因此,传统的网络威胁和攻击现在是``智能威胁''。本文讨论了网络安全和网络威胁,以及传统和智能的防御方式,以防止网络攻击。最终,结束讨论,以潜在的潜在前景结束讨论AI网络安全。
translated by 谷歌翻译
Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
在本文中,我们评估了基于对抗示例的深度学习的AED系统。我们测试多个安全性关键任务的稳健性,实现为CNNS分类器,以及由Google制造的现有第三方嵌套设备,该模型运行自己的黑盒深度学习模型。我们的对抗示例使用由白色和背景噪声制成的音频扰动。这种干扰易于创建,以执行和再现,并且可以访问大量潜在的攻击者,甚至是非技术精明的攻击者。我们表明,对手可以专注于音频对抗性投入,使AED系统分类,即使我们使用少量给定类型的嘈杂干扰,也能实现高成功率。例如,在枪声课堂的情况下,我们在采用少于0.05白噪声水平时达到近100%的成功率。类似于以前通过工作的工作侧重于来自图像域以及语音识别域的对抗示例。然后,我们寻求通过对策提高分类器的鲁棒性。我们雇用了对抗性培训和音频去噪。我们表明,当应用于音频输入时,这些对策可以是分离或组合的,在攻击时,可以成功地产生近50%的近50%。
translated by 谷歌翻译
深度学习技术的发展极大地促进了自动语音识别(ASR)技术的性能提高,该技术证明了在许多任务中与人类听力相当的能力。语音接口正变得越来越广泛地用作许多应用程序和智能设备的输入。但是,现有的研究表明,DNN很容易受到轻微干扰的干扰,并且会出现错误的识别,这对于由声音控制的智能语音应用非常危险。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译
With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial perturbations are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples. In addition, three major challenges in adversarial examples and the potential solutions are discussed.
translated by 谷歌翻译