We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Our network has a very deep recursive layer (up to 16 recursions). Increasing recursion depth can improve performance without introducing new parameters for additional convolutions. Albeit advantages, learning a DRCN is very hard with a standard gradient descent method due to exploding/vanishing gradients. To ease the difficulty of training, we propose two extensions: recursive-supervision and skip-connection. Our method outperforms previous methods by a large margin.
translated by 谷歌翻译
We present a highly accurate single-image superresolution (SR) method. Our method uses a very deep convolutional network inspired by VGG-net used for ImageNet classification [19]. We find increasing our network depth shows a significant improvement in accuracy. Our final model uses 20 weight layers. By cascading small filters many times in a deep network structure, contextual information over large image regions is exploited in an efficient way. With very deep networks, however, convergence speed becomes a critical issue during training. We propose a simple yet effective training procedure. We learn residuals only and use extremely high learning rates (10 4 times higher than SRCNN [6]) enabled by adjustable gradient clipping. Our proposed method performs better than existing methods in accuracy and visual improvements in our results are easily noticeable.
translated by 谷歌翻译
Recently, Convolutional Neural Network (CNN) based models have achieved great success in Single Image Super-Resolution (SISR). Owing to the strength of deep networks, these CNN models learn an effective nonlinear mapping from the low-resolution input image to the high-resolution target image, at the cost of requiring enormous parameters. This paper proposes a very deep CNN model (up to 52 convolutional layers) named Deep Recursive Residual Network (DRRN) that strives for deep yet concise networks. Specifically, residual learning is adopted, both in global and local manners, to mitigate the difficulty of training very deep net-works; recursive learning is used to control the model parameters while increasing the depth. Extensive benchmark evaluation shows that DRRN significantly outperforms state of the art in SISR, while utilizing far fewer parameters. Code is available at https://github.com/tyshiwo /DRRN CVPR17.
translated by 谷歌翻译
Recently, very deep convolutional neural networks (CNNs) have been attracting considerable attention in image restoration. However, as the depth grows, the long-term dependency problem is rarely realized for these very deep models, which results in the prior states/layers having little influence on the subsequent ones. Motivated by the fact that human thoughts have persistency, we propose a very deep persistent memory network (MemNet) that introduces a memory block, consisting of a recursive unit and a gate unit, to explicitly mine persistent memory through an adaptive learning process. The recursive unit learns multi-level representations of the current state under different receptive fields. The representations and the outputs from the previous memory blocks are concatenated and sent to the gate unit, which adaptively controls how much of the previous states should be reserved, and decides how much of the current state should be stored. We apply MemNet to three image restoration tasks, i.e., image denosing, superresolution and JPEG deblocking. Comprehensive experiments demonstrate the necessity of the MemNet and its unanimous superiority on all three tasks over the state of the arts. Code is available at https://github.com/ tyshiwo/MemNet.
translated by 谷歌翻译
Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image superresolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.
translated by 谷歌翻译
Recent research on super-resolution has progressed with the development of deep convolutional neural networks (DCNN). In particular, residual learning techniques exhibit improved performance. In this paper, we develop an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods. The significant performance improvement of our model is due to optimization by removing unnecessary modules in conventional residual networks. The performance is further improved by expanding the model size while we stabilize the training procedure. We also propose a new multi-scale deep super-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model. The proposed methods show superior performance over the state-of-the-art methods on benchmark datasets and prove its excellence by winning the NTIRE2017 Super-Resolution Challenge [26].
translated by 谷歌翻译
The feed-forward architectures of recently proposed deep super-resolution networks learn representations of low-resolution inputs, and the non-linear mapping from those to high-resolution output. However, this approach does not fully address the mutual dependencies of low-and high-resolution images. We propose Deep Back-Projection Networks (DBPN), that exploit iterative up-and downsampling layers, providing an error feedback mechanism for projection errors at each stage. We construct mutuallyconnected up-and down-sampling stages each of which represents different types of image degradation and highresolution components. We show that extending this idea to allow concatenation of features across up-and downsampling stages (Dense DBPN) allows us to reconstruct further improve super-resolution, yielding superior results and in particular establishing new state of the art results for large scaling factors such as 8× across multiple data sets.
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
translated by 谷歌翻译
We propose a deep learning method for single image superresolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the lowresolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage.
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The lowresolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.
translated by 谷歌翻译
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-ofthe-art single image super-resolution approaches.
translated by 谷歌翻译
Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image superresolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4× upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
translated by 谷歌翻译
This paper reviews the first challenge on single image super-resolution (restoration of rich details in an low resolution image) with focus on proposed solutions and results.A new DIVerse 2K resolution image dataset (DIV2K) was employed. The challenge had 6 competitions divided into 2 tracks with 3 magnification factors each. Track 1 employed the standard bicubic downscaling setup, while Track 2 had unknown downscaling operators (blur kernel and decimation) but learnable through low and high res train images. Each competition had ∼ 100 registered participants and 20 teams competed in the final testing phase. They gauge the state-of-the-art in single image super-resolution.
translated by 谷歌翻译
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to realworld applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
translated by 谷歌翻译
已经证明了深度卷积神经网络近年来对SISR有效。一方面,已经广泛使用了残余连接和密集连接,以便于前向信息和向后梯度流动以提高性能。然而,当前方法以次优的方式在大多数网络层中单独使用残留连接和密集连接。另一方面,虽然各种网络和方法旨在改善计算效率,节省参数或利用彼此的多种比例因子的训练数据来提升性能,但它可以在人力资源空间中进行超级分辨率来具有高计算成本或不能在不同尺度因子的模型之间共享参数以节省参数和推理时间。为了解决这些挑战,我们提出了一种使用双路径连接的高效单图像超分辨率网络,其多种规模学习命名为EMSRDPN。通过将双路径的双路径连接引入EMSRDPN,它在大多数网络层中以综合方式使用残差连接和密集连接。双路径连接具有重用残余连接的共同特征和探索密集连接的新功能,以了解SISR的良好代表。要利用多种比例因子的特征相关性,EMSRDPN在不同缩放因子之间共享LR空间中的所有网络单元,以学习共享功能,并且仅使用单独的重建单元进行每个比例因子,这可以利用多种规模因子的培训数据来帮助各个规模因素另外提高性能,同时可以节省参数并支持共享推理,以提高效率的多种规模因素。实验显示EMSRDPN通过SOTA方法实现更好的性能和比较或更好的参数和推理效率。
translated by 谷歌翻译
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.
translated by 谷歌翻译
最近,基于深度学习的超分辨率方法取得了良好的性能,但主要关注通过喂养许多样品来训练单个广义的深网络。但是直观地,每个图像都具有其表示,并且预计将获得自适应模型。对于此问题,我们通过利用图像或特征的全局上下文信息来提出一种新颖的图像特异性卷积核调制(IKM),以产生适当地调制卷积核的注意重量,这越优于Vanilla卷积和几个现有的注意机制在没有任何其他参数的情况下嵌入最先进的架构。特别是,为了优化我们在迷你批量培训中的IKM,我们引入了一种特定于图像的优化(ISO)算法,比传统的迷你批量SGD优化更有效。此外,我们调查IKM对最先进的架构的影响,并利用一个带有U风格的残差学习和沙漏密集的块学习的新骨干,术语U-HOLGLASS密集网络(U-HDN),这是一个理论上和实验,最大限度地提高IKM的效力。单图像超分辨率的广泛实验表明,该方法实现了优异的现有方法性能。代码可在github.com/yuanfeihuang/ikm获得。
translated by 谷歌翻译
Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.
translated by 谷歌翻译