Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.
translated by 谷歌翻译
我们向传感器独立性(Sensei)介绍了一种新型神经网络架构 - 光谱编码器 - 通过该传感器独立性(Sensei) - 通过其中具有不同组合的光谱频带组合的多个多光谱仪器可用于训练广义深度学习模型。我们专注于云屏蔽的问题,使用几个预先存在的数据集,以及Sentinel-2的新的自由可用数据集。我们的模型显示在卫星上实现最先进的性能,它受过训练(Sentinel-2和Landsat 8),并且能够推断到传感器,它在训练期间尚未见过Landsat 7,每\ 'USAT-1,和Sentinel-3 SLST。当多种卫星用于培训,接近或超越专用单传感器型号的性能时,模型性能显示出改善。这项工作是激励遥感社区可以使用巨大各种传感器采取的数据的动机。这不可避免地导致标记用于不同传感器的努力,这限制了深度学习模型的性能,因为他们需要最佳地执行巨大的训练。传感器独立性可以使深度学习模型能够同时使用多个数据集进行培训,提高性能并使它们更广泛适用。这可能导致深入学习方法,用于在板载应用程序和地面分段数据处理中更频繁地使用,这通常需要模型在推出时或之后即将开始。
translated by 谷歌翻译
这项研究介绍了\ textit {landslide4sense},这是一种从遥感中检测到滑坡检测的参考基准。该存储库具有3,799个图像贴片,可从Sentinel-2传感器中融合光学层,并带有数字高程模型和来自ALOS Palsar的斜率层。附加的地形信息促进了对滑坡边界的准确检测,而最近的研究表明,仅使用光学数据,这是具有挑战性的。广泛的数据集支持在滑坡检测中进行深度学习(DL)研究,以及用于系统更新滑坡库存的方法的开发和验证。基准数据集已在四个不同的时间和地理位置收集:伊伯里(2018年9月),科达古(2018年8月),戈尔卡(2015年4月)和台湾(2009年8月)。每个图像像素均标记为属于滑坡,包括各种来源和彻底的手动注释。然后,我们评估11个最先进的DL分割模型的滑坡检测性能:U-NET,RESU-NET,PSPNET,CONTECTNET,DEEPLAB-V2,DEEPLAB-V3+,FCN-8,LINKNET,FRRRN-A,FRRN-A,, FRRN-B和SQNET。所有型号均已从划痕上对每个研究区域的四分之一的补丁进行培训,并在其他三个季度的独立贴片上进行了测试。我们的实验表明,Resu-NET的表现优于其他模型,用于滑坡检测任务。我们在\ url {www.landslide4sense.org}公开获得多种源滑坡基准数据(Landslide4sense)和经过测试的DL模型,为遥感,计算机视觉和机器学习社区建立了重要的资源通常,尤其是对滑坡检测的应用。
translated by 谷歌翻译
卫星遥感提供了一种具有成本效益的概要洪水监测的解决方案,卫星衍生的洪水图为传统上使用的数值洪水淹没模型提供了一种计算有效的替代方法。尽管卫星碰巧涵盖正在进行的洪水事件时确实提供了及时的淹没信息,但它们受其时空分辨率的限制,因为它们在各种规模上动态监测洪水演变的能力。不断改善对新卫星数据源的访问以及大数据处理功能,就此问题的数据驱动解决方案而言,已经解锁了前所未有的可能性。具体而言,来自卫星的数据融合,例如哥白尼前哨,它们具有很高的空间和低时间分辨率,以及来自NASA SMAP和GPM任务的数据,它们的空间较低,但时间较高的时间分辨率可能会导致高分辨率的洪水淹没在A处的高分辨率洪水。每日规模。在这里,使用Sentinel-1合成孔径雷达和各种水文,地形和基于土地利用的预测因子衍生出的洪水淹没图对卷积神经网络进行了训练,以预测高分辨率的洪水泛滥概率图。使用Sentinel-1和Sentinel-2衍生的洪水面罩,评估了UNET和SEGNET模型架构的性能,分别具有95%的信心间隔。精确召回曲线(PR-AUC)曲线下的区域(AUC)被用作主要评估指标,这是由于二进制洪水映射问题中类固有的不平衡性质,最佳模型提供了PR-AUC 0.85。
translated by 谷歌翻译
作物现场边界有助于映射作物类型,预测产量,并向农民提供现场级分析。近年来,已经看到深深学习的成功应用于划定工业农业系统中的现场边界,但由于(1)需要高分辨率卫星图像的小型字段来解除界限和(2)缺乏(2)缺乏用于模型培训和验证的地面标签。在这项工作中,我们结合了转移学习和弱监督来克服这些挑战,我们展示了在印度的成功方法,我们有效地产生了10,000个新的场地标签。我们最好的型号使用1.5亿分辨率的空中客车现货图像作为投入,预先列进法国界限的最先进的神经网络,以及印度标签上的微调,以实现0.86的联盟(iou)中位数交叉口在印度。如果使用4.8M分辨率的行星扫描图像,最好的模型可以实现0.72的中位数。实验还表明,法国的预训练减少了所需的印度现场标签的数量,以便在数据集较小时尽可能多地实现给定的性能水平。这些发现表明我们的方法是划定当前缺乏现场边界数据集的世界区域中的裁剪领域的可扩展方法。我们公开发布了10,000个标签和描绘模型,以方便社区创建现场边界地图和新方法。
translated by 谷歌翻译
对联合国可持续发展目标的进展(SDGS)因关键环境和社会经济指标缺乏数据而受到阻碍,其中历史上有稀疏时间和空间覆盖率的地面调查。机器学习的最新进展使得可以利用丰富,频繁更新和全球可用的数据,例如卫星或社交媒体,以向SDGS提供洞察力。尽管有希望的早期结果,但到目前为止使用此类SDG测量数据的方法在很大程度上在不同的数据集或使用不一致的评估指标上进行了评估,使得难以理解的性能是改善,并且额外研究将是最丰富的。此外,处理卫星和地面调查数据需要域知识,其中许多机器学习群落缺乏。在本文中,我们介绍了3个SDG的3个基准任务的集合,包括与经济发展,农业,健康,教育,水和卫生,气候行动和陆地生命相关的任务。 15个任务中的11个数据集首次公开发布。我们为Acceptandbench的目标是(1)降低机器学习界的进入的障碍,以促进衡量和实现SDGS; (2)提供标准基准,用于评估各种SDG的任务的机器学习模型; (3)鼓励开发新颖的机器学习方法,改进的模型性能促进了对SDG的进展。
translated by 谷歌翻译
近年来,地理空间行业一直在稳定发展。这种增长意味着增加卫星星座,每天都会产生大量的卫星图像和其他遥感数据。有时,这些信息,即使在某些情况下我们指的是公开可用的数据,由于它的大小,它也无法占据。从时间和其他资源的角度来看,借助人工或使用传统的自动化方法来处理如此大量的数据并不总是可行的解决方案。在目前的工作中,我们提出了一种方法,用于创建一个由公开可用的遥感数据组成的多模式和时空数据集,并使用ART机器学习(ML)技术进行可行性进行测试。确切地说,卷积神经网络(CNN)模型的用法能够分离拟议数据集中存在的不同类别的植被。在地理信息系统(GIS)和计算机视觉(CV)的背景下,类似方法的受欢迎程度和成功更普遍地表明,应考虑并进一步分析和开发方法。
translated by 谷歌翻译
该卷包含来自机器学习挑战的选定贡献“发现玛雅人的奥秘”,该挑战在欧洲机器学习和数据库中知识发现的欧洲挑战赛曲目(ECML PKDD 2021)中提出。遥感大大加速了古代玛雅人森林地区的传统考古景观调查。典型的探索和发现尝试,除了关注整个古老的城市外,还集中在单个建筑物和结构上。最近,已经成功地尝试了使用机器学习来识别古代玛雅人定居点。这些尝试虽然相关,但却集中在狭窄的区域上,并依靠高质量的空中激光扫描(ALS)数据,该数据仅涵盖古代玛雅人曾经定居的地区的一小部分。另一方面,由欧洲航天局(ESA)哨兵任务制作的卫星图像数据很丰富,更重要的是公开。旨在通过执行不同类型的卫星图像(Sentinel-1和Sentinel-2和ALS)的集成图像细分来定位和识别古老的Maya架构(建筑物,Aguadas和平台)的“发现和识别古代玛雅体系结构(建筑物,Aguadas和平台)的挑战的“发现和识别古老的玛雅体系结构(建筑物,阿吉达斯和平台)的“发现玛雅的奥秘”的挑战, (LIDAR)数据。
translated by 谷歌翻译
Deep learning semantic segmentation algorithms have provided improved frameworks for the automated production of Land-Use and Land-Cover (LULC) maps, which significantly increases the frequency of map generation as well as consistency of production quality. In this research, a total of 28 different model variations were examined to improve the accuracy of LULC maps. The experiments were carried out using Landsat 5/7 or Landsat 8 satellite images with the North American Land Change Monitoring System labels. The performance of various CNNs and extension combinations were assessed, where VGGNet with an output stride of 4, and modified U-Net architecture provided the best results. Additional expanded analysis of the generated LULC maps was also provided. Using a deep neural network, this work achieved 92.4% accuracy for 13 LULC classes within southern Manitoba representing a 15.8% improvement over published results for the NALCMS. Based on the large regions of interest, higher radiometric resolution of Landsat 8 data resulted in better overall accuracies (88.04%) compare to Landsat 5/7 (80.66%) for 16 LULC classes. This represents an 11.44% and 4.06% increase in overall accuracy compared to previously published NALCMS results, including larger land area and higher number of LULC classes incorporated into the models compared to other published LULC map automation methods.
translated by 谷歌翻译
云和雪在可见和近红外(VNIR)范围内具有类似的光谱特征,因此难以在高分辨率VNIR图像中彼此区分。我们通过引入短波红外(SWIR)频段来解决这个问题,其中云具有高度反射性,雪是吸收的。由于与VNIR相比,由于苏尔州的分辨率通常是较低的分辨率,本研究提出了一种可以在VNIR图像中有效地检测云和雪的多分辨率全卷积神经网络(FCN)。我们融合了深fcn内的多分辨率频段,并在较高的VNIR分辨率下执行语义分割。这种基于融合的分类器,以端到端的方式训练,实现了94.31%的总体准确性和F1分数,在印度乌塔塔克手的州捕获的资源-2数据上的云。发现这些评分比随机森林分类器高30%,比独立单分辨率FCN高10%。除了对云检测目的有用外,该研究还突出了多传感器融合问题的卷积神经网络的潜力。
translated by 谷歌翻译
小型太阳能光伏(PV)阵列中电网的有效集成计划需要访问高质量的数据:单个太阳能PV阵列的位置和功率容量。不幸的是,不存在小型太阳能光伏的国家数据库。那些确实有限的空间分辨率,通常汇总到州或国家一级。尽管已经发布了几种有希望的太阳能光伏检测方法,但根据研究,研究这些模型的性能通常是高度异质的。这些方法对能源评估的实际应用的比较变得具有挑战性,可能意味着报告的绩效评估过于乐观。异质性有多种形式,我们在这项工作中探讨了每种形式:空间聚集的水平,地面真理的验证,培训和验证数据集的不一致以及培训的位置和传感器的多样性程度和验证数据始发。对于每个人,我们都会讨论文献中的新兴实践,以解决它们或暗示未来研究的方向。作为调查的一部分,我们评估了两个大区域的太阳PV识别性能。我们的发现表明,由于验证过程中的共同局限性,从卫星图像对太阳PV自动识别的传统绩效评估可能是乐观的。这项工作的收获旨在为能源研究人员和专业人员提供自动太阳能光伏评估技术的大规模实用应用。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
Crop type maps are critical for tracking agricultural land use and estimating crop production. Remote sensing has proven an efficient and reliable tool for creating these maps in regions with abundant ground labels for model training, yet these labels remain difficult to obtain in many regions and years. NASA's Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar instrument, originally designed for forest monitoring, has shown promise for distinguishing tall and short crops. In the current study, we leverage GEDI to develop wall-to-wall maps of short vs tall crops on a global scale at 10 m resolution for 2019-2021. Specifically, we show that (1) GEDI returns can reliably be classified into tall and short crops after removing shots with extreme view angles or topographic slope, (2) the frequency of tall crops over time can be used to identify months when tall crops are at their peak height, and (3) GEDI shots in these months can then be used to train random forest models that use Sentinel-2 time series to accurately predict short vs. tall crops. Independent reference data from around the world are then used to evaluate these GEDI-S2 maps. We find that GEDI-S2 performed nearly as well as models trained on thousands of local reference training points, with accuracies of at least 87% and often above 90% throughout the Americas, Europe, and East Asia. Systematic underestimation of tall crop area was observed in regions where crops frequently exhibit low biomass, namely Africa and South Asia, and further work is needed in these systems. Although the GEDI-S2 approach only differentiates tall from short crops, in many landscapes this distinction goes a long way toward mapping the main individual crop types. The combination of GEDI and Sentinel-2 thus presents a very promising path towards global crop mapping with minimal reliance on ground data.
translated by 谷歌翻译
这里介绍了人工智能研究所(IARAI)组织的2022年Landslide4sense(L4S)竞赛的科学结果。竞争的目的是根据全球收集的卫星图像的大规模多个来源自动检测滑坡。 2022 L4S旨在促进有关使用卫星图像的语义分割任务的深度学习模型(DL)模型最新发展的跨学科研究。在过去的几年中,由于卷积神经网络(CNN)的发展,基于DL的模型已经达到了对图像解释的期望。本文的主要目的是介绍本次比赛中介绍的细节和表现最佳的算法。获胜的解决方案详细介绍了Swin Transformer,Segformer和U-NET等最先进的模型。还考虑了先进的机器学习技术和诸如硬采矿,自我培训和混合数据增强之类的策略。此外,我们描述了L4S基准数据集,以促进进一步的比较,并在线报告准确性评估的结果。可以在\ textIt {未来开发排行榜上访问数据,以供将来评估,\ url {https://www.iarai.ac.ac.at/landslide4sense/challenge/},并邀请研究人员提交更多预测结果,评估准确性在他们的方法中,将它们与其他用户的方法进行比较,理想情况下,改善了本文报告的滑坡检测结果。
translated by 谷歌翻译
集中的动物饲养业务(CAFOS)对空气,水和公共卫生构成严重风险,但已被证明挑战规范。美国政府问责办公室注意到基本挑战是缺乏关于咖啡馆的全面的位置信息。我们使用美国农业部的国家农产病程(Naip)1M / Pixel Acial Imagerery来检测美国大陆的家禽咖啡馆。我们培养卷积神经网络(CNN)模型来识别单个家禽谷仓,并将最佳表现模型应用于超过42 TB的图像,以创建家禽咖啡座的第一个国家开源数据集。我们验证了来自加利福尼亚州的10个手标县的家禽咖啡馆设施的模型预测,并证明这种方法具有填补环境监测中差距的显着潜力。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
通过卫星摄像机获取关于地球表面的大面积的信息使我们能够看到远远超过我们在地面上看到的更多。这有助于我们在检测和监测土地使用模式,大气条件,森林覆盖和许多非上市方面的地区的物理特征。所获得的图像不仅跟踪连续的自然现象,而且对解决严重森林砍伐的全球挑战也至关重要。其中亚马逊盆地每年占最大份额。适当的数据分析将有助于利用可持续健康的氛围来限制对生态系统和生物多样性的不利影响。本报告旨在通过不同的机器学习和优越的深度学习模型用大气和各种陆地覆盖或土地使用亚马逊雨林的卫星图像芯片。评估是基于F2度量完成的,而用于损耗函数,我们都有S形跨熵以及Softmax交叉熵。在使用预先训练的ImageNet架构中仅提取功能之后,图像被间接馈送到机器学习分类器。鉴于深度学习模型,通过传输学习使用微调Imagenet预训练模型的集合。到目前为止,我们的最佳分数与F2度量为0.927。
translated by 谷歌翻译
农作物残留物燃烧是世界许多地方的空气污染的主要来源,尤其是南亚。政策制定者,从业人员和研究人员都投资了衡量影响和制定干预措施以减少燃烧。但是,测量燃烧的影响或干预措施的有效性减少燃烧需要数据燃烧的位置。这些数据在成本和可行性方面都在现场收集具有挑战性。我们利用印度旁遮普邦旁遮普邦农作物残留物燃烧的地面监测的数据,以探索使用可访问的卫星图像是否可以更有效地检测到燃烧。具体而言,我们使用了具有高时间分辨率(最多每天)的3M Planetscope数据以及具有每周时间分辨率但光谱信息深度的公共可用Sentinel-2数据。在分析了不同光谱带和燃烧指数单独分离燃烧和未燃烧图的能力之后,我们构建了一个随机森林模型,这些模型确定提供了最大的分离性,并用地面验证的数据评估了模型性能。鉴于测量所带来的挑战,我们的总体模型精度为82%是有利的。基于此过程的见解,我们讨论了检测卫星图像中农作物残留物燃烧的技术挑战,以及衡量燃烧和政策干预措施的影响的挑战。
translated by 谷歌翻译
2D和3D建筑图提供了宝贵的信息,以了解人类活动及其对地球及其环境的影响。尽管为提高建筑地图的质量而做出了巨大努力,但自动化方法产生的当前大规模建筑地图仍存在许多错误和不确定性,并且通常仅限于提供2D建筑信息。这项研究提出了一种开源无监督的2D和3D建筑物提取算法,并带有适用于大型建筑物映射的机载LIDAR数据。我们的算法以完全无监督的方式运行,不需要任何培训标签或培训程序。我们的算法由形态过滤和基于平面的过滤组成。因此,计算是有效的,结果易于预测,这可以大大减少所得建筑图中的不确定性。丹佛和纽约市的大规模数据集(> 550 $ km^2 $)的定量和定性评估表明,我们的算法比通过基于深度学习的方法生成的Microsoft Building Footprints可以产生更准确的建筑图。在不同条件下进行的广泛评估证实,我们的算法是可扩展的,可以通过适当的参数选择进一步改进。我们还详细介绍了参数和潜在错误来源的影响,以帮助我们算法的潜在用户。我们的基于激光雷达的算法具有优势,即生成2D和3D构建图在计算上有效,而它产生了准确且可解释的结果。我们提出的算法为带有机载激光雷达数据的全球尺度2D和3D建筑物映射提供了巨大的潜力。
translated by 谷歌翻译
全世界不可持续的捕鱼实践对海洋资源和生态系统构成了重大威胁。识别逃避监测系统的船只(称为“深色船只”)是管理和保护海洋环境健康的关键。随着基于卫星的合成孔径雷达(SAR)成像和现代机器学习(ML)的兴起,现在可以在全天候条件下白天或黑夜自动检测到黑暗的容器。但是,SAR图像需要特定于域的治疗,并且ML社区无法广泛使用。此外,对象(船只)是小而稀疏的,具有挑战性的传统计算机视觉方法。我们提出了用于训练ML模型的最大标记数据集,以检测和表征SAR的血管。 XView3-SAR由Sentinel-1任务中的近1,000张分析SAR图像组成,平均每个29,400 x-24,400像素。使用自动化和手动分析的组合对图像进行注释。每个SAR图像都伴随着共置的测深和风状射手。我们概述了XView3计算机视觉挑战的结果,这是一项国际竞争,使用XView3-SAR进行大规模的船舶检测和表征。我们发布数据(https://iuu.xview.us/)和代码(https://github.com/diux-xview),以支持该重要应用程序的ML方法的持续开发和评估。
translated by 谷歌翻译