由于缺乏对未标记的结构的监督,部分监督的学习对于细分可能是具有挑战性的,并且直接应用完全监督学习的方法可能导致不兼容,这意味着地面真相不在损失功能的解决方案集合中。为了应对挑战,我们提出了一个深入的兼容学习(DCL)框架,该框架使用仅带有部分结构的图像来训练单个多标签分割网络。我们首先将部分监督的分割制定为与缺少标签兼容的优化问题,并证明其兼容性。然后,我们为模型配备有条件的分割策略,以将标签从多个部分注销的图像传播到目标。此外,我们提出了一种双重学习策略,该策略同时学习了标签传播的两个相反的映射,以对未标记的结构进行实质性的监督。这两种策略分别为兼容形式,分别称为条件兼容性和双重兼容性。我们显示该框架通常适用于常规损失功能。该方法对现有方法具有重大的性能提高,尤其是在只有小型培训数据集的情况下。三个细分任务的结果表明,所提出的框架可以实现匹配完全监督模型的性能。
translated by 谷歌翻译
Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
Medical image segmentation methods typically rely on numerous dense annotated images for model training, which are notoriously expensive and time-consuming to collect. To alleviate this burden, weakly supervised techniques have been exploited to train segmentation models with less expensive annotations. In this paper, we propose a novel point-supervised contrastive variance method (PSCV) for medical image semantic segmentation, which only requires one pixel-point from each organ category to be annotated. The proposed method trains the base segmentation network by using a novel contrastive variance (CV) loss to exploit the unlabeled pixels and a partial cross-entropy loss on the labeled pixels. The CV loss function is designed to exploit the statistical spatial distribution properties of organs in medical images and their variance distribution map representations to enforce discriminative predictions over the unlabeled pixels. Experimental results on two standard medical image datasets demonstrate that the proposed method outperforms the state-of-the-art weakly supervised methods on point-supervised medical image semantic segmentation tasks.
translated by 谷歌翻译
3D医学图像分割中卷积神经网络(CNN)的成功取决于大量的完全注释的3D体积,用于训练,这些训练是耗时且劳动力密集的。在本文中,我们建议在3D医学图像中只有7个点注释分段目标,并设计一个两阶段弱监督的学习框架PA-SEG。在第一阶段,我们采用大地距离变换来扩展种子点以提供更多的监督信号。为了在培训期间进一步处理未注释的图像区域,我们提出了两种上下文正则化策略,即多视图条件随机场(MCRF)损失和差异最小化(VM)损失,其中第一个鼓励具有相似特征的像素以具有一致的标签,第二个分别可以最大程度地减少分段前景和背景的强度差异。在第二阶段,我们使用在第一阶段预先训练的模型获得的预测作为伪标签。为了克服伪标签中的噪音,我们引入了一种自我和交叉监测(SCM)策略,该策略将自我训练与跨知识蒸馏(CKD)结合在主要模型和辅助模型之间,该模型从彼此生成的软标签中学习。在公共数据集的前庭造型瘤(VS)分割和脑肿瘤分割(BRAT)上的实验表明,我们在第一阶段训练的模型优于现有的最先进的弱监督方法,并在使用SCM之后,以提供其他scm来获得其他额外的scm培训,与Brats数据集中完全有监督的对应物相比,该模型可以实现竞争性能。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
精确的心脏计算,多种式图像的分析和建模对于心脏病的诊断和治疗是重要的。晚期钆增强磁共振成像(LGE MRI)是一种有希望的技术,可视化和量化心肌梗塞(MI)和心房疤痕。由于LGE MRI的低图像质量和复杂的增强图案,MI和心房疤痕的自动化量可能是具有挑战性的。此外,与带金标准标签的其他序列LGE MRIS相比特别有限,这表示用于开发用于自动分割和LGE MRIS定量的新型算法的另一个障碍。本章旨在总结最先进的基于深度学习的多模态心脏图像分析的先进贡献。首先,我们向基于多序心脏MRI的心肌和病理分割介绍了两个基准工作。其次,提出了两种新的左心房瘢痕分割和从LGE MRI定量的新型框架。第三,我们为跨型心脏图像分割提出了三种无监督的域适应技术。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)的左心房(LA)和心房瘢痕分割是临床实践中的重要任务。 %,引导消融治疗和预测心房颤动(AF)患者的治疗结果。然而,由于图像质量差,各种La形状,薄壁和周围增强区域,自动分割仍然具有挑战性。以前的方法通常独立解决了这两个任务,并忽略了洛杉矶和疤痕之间的内在空间关系。在这项工作中,我们开发了一个新的框架,即atrialjsqnet,其中La分段,在La表面上的瘢痕投影以及疤痕量化,在端到端的样式中进行。我们通过明确的表面投影提出了一种形状注意(SA),以利用LA和LA瘢痕之间的固有相关性。具体而言,SA方案嵌入到多任务架构中以执行联合LA分段和瘢痕量化。此外,引入了空间编码(SE)丢失以包含目标的连续空间信息,以便在预测的分割中减少嘈杂的斑块。我们从Miccai2018 La挑战中评估了60 LGE MRIS上提出的框架。在公共数据集上的广泛实验表明了拟议的ATRIALJSQNET的效果,从而实现了最先进的竞争性能。明确探索了LA分割和瘢痕量化之间的相关性,并对这两个任务显示出显着的性能改进。一旦稿件接受通过https://zmiclab.github.io/projects.html,就会公开发布的代码和结果。
translated by 谷歌翻译
尽管使用深度学习技术从2D ENA中提取血管结构的研究越来越多,但对于这种方法,众所周知,曲线式结构上的数据注释过程(如视网膜脉管系统)非常昂贵且耗时,耗时,耗时,尽管很少有人试图解决注释问题。在这项工作中,我们提出了涂鸦基本弱监督学习方法的应用来自动化像素级注释。所提出的方法称为八度,使用涂鸦的地面真理与对抗性和新颖的自我监督深度监督相结合。我们的新型机制旨在利用来自类似于Unet的结构的歧视层的判别输出,在训练过程中,骨料判别输出和分割图谓词之间的kullback-liebler差异在训练过程中被最小化。如我们的实验所示,这种组合方法导致血管结构的定位更好。我们在大型公共数据集上验证了我们提出的方法,即Rose,Octa-500。将分割性能与最新的完全监督和基于涂鸦的弱监督方法进行了比较。实验中使用的工作的实施位于[链接]。
translated by 谷歌翻译
深度学习算法的最新进展为解决许多医学图像分析问题带来了重大好处。培训深度学习模型通常需要具有专家标记注释的大型数据集。但是,获取专家标记的注释不仅昂贵,而且主观,容易出错,并且观察者内部变异性会引入标签。由于解剖学的模棱两可,使用深度学习模型来细分医学图像时,这尤其是一个问题。基于图像的医学诊断工具使用经过不正确分段标签训练的深度学习模型可以导致错误的诊断和治疗建议。与单评论注释相比,多评价者注释可能更适合于使用小型培训集的深度学习模型进行训练。本文的目的是开发和评估一种基于MRI中病变特征的多评价者注释和解剖学知识来生成概率标签的方法,以及一种使用概率的标签使用归一化活动性损失作为A的病变特征的解剖学知识,以训练分割模型”。耐噪声损失的功能。通过将17个膝盖MRI扫描的二进制基础真理进行比较,以评估该模型,以用于临床分割和检测骨髓病变(BML)。该方法与二进制跨透镜损失函数相比,该方法成功提高了精度14,召回22和骰子得分8%。总体而言,这项工作的结果表明,使用软标签的拟议归一化主动损失成功地减轻了嘈杂标签的影响。
translated by 谷歌翻译
小儿肌肉骨骼系统的临床诊断依赖于医学成像检查的分析。在医学图像处理管道中,使用深度学习算法的语义分割使人可以自动生成患者特定的三维解剖模型,这对于形态学评估至关重要。但是,小儿成像资源的稀缺性可能导致单个深层分割模型的准确性和泛化性能降低。在这项研究中,我们建议设计一个新型的多任务多任务多域学习框架,在该框架中,单个分割网络对由解剖学的不同部分产生的多个数据集进行了优化。与以前的方法不同,我们同时考虑多个强度域和分割任务来克服小儿数据的固有稀缺性,同时利用成像数据集之间的共享特征。为了进一步提高概括能力,我们从自然图像分类中采用了转移学习方案,以及旨在在共享表示中促进域特异性群集的多尺度对比正则化,以及多连接解剖学先验来执行解剖学上一致的预测。我们评估了使用脚踝,膝盖和肩关节的三个稀缺和小儿成像数据集进行骨分割的贡献。我们的结果表明,所提出的方法在骰子指标中的表现优于个人,转移和共享分割方案,并具有统计学上足够的利润。拟议的模型为智能使用成像资源和更好地管理小儿肌肉骨骼疾病提供了新的观点。
translated by 谷歌翻译
儿科肌肉骨骼系统的形态学和诊断评价在临床实践中至关重要。但是,大多数分段模型在稀缺的儿科成像数据上都不好。我们提出了一种新的预训练的正则化卷积编码器 - 解码器,用于分割异质儿科磁共振(MR)图像的具有挑战性的任务。在这方面,我们采用转移学习方法以及正规化策略来改善分段模型的概括。为此,我们已经构思了用于分割网络的新颖优化方案,其包括丢失函数的额外正则化术语。为了获得全局一致的预测,我们纳入了基于形状的正则化,从自动编码器学习的非线性形状表示来源。另外,通过鉴别器计算的对抗正规化是集成的,以鼓励合理的描绘。评估来自脚踝和肩部关节的两个稀缺的小儿摄像数据集的多骨分割任务的方法,包括病理和健康检查。所提出的方法与先前提出的骰子,灵敏度,特异性,最大对称表面距离,平均对称表面距离和相对绝对体积差异度量的方法更好或以前的方法进行更好或以前的方法进行比例。我们说明所提出的方法可以很容易地集成到各种骨骼分割策略中,并且可以提高在大型非医学图像数据库上预先培训的模型的预测准确性。获得的结果为小儿肌肉骨骼障碍的管理带来了新的视角。
translated by 谷歌翻译
组织分割是病理检查的主要主机,而手动描述则过于繁重。为了协助这一耗时和主观的手动步骤,研究人员已经设计了自动在病理图像中分割结构的方法。最近,自动化机器和基于深度学习的方法主导了组织分割研究。但是,大多数基于机器和深度学习的方法都是使用大量培训样本进行监督和开发的,其中PixelWise注释很昂贵,有时无法获得。本文通过将端到端的深层混合模型与有限的指标集成以获取准确的语义组织分割,从而引入了一种新颖的无监督学习范式。该约束旨在在计算优化函数期间集中深层混合模型的组成部分。这样做,可以大大减少当前无监督学习方法中常见的多余或空的班级问题。通过对公共和内部数据集的验证,拟议的深度约束高斯网络在组织细分方面取得了更好的性能(Wilcoxon签名级测试)更好的性能(平均骰子得分分别为0.737和0.735),具有改善与其他现有的无监督分割方法相比。此外,该方法与完全监督的U-NET相比,提出的方法具有相似的性能(P值> 0.05)。
translated by 谷歌翻译
Solving variational image segmentation problems with hidden physics is often expensive and requires different algorithms and manually tunes model parameter. The deep learning methods based on the U-Net structure have obtained outstanding performances in many different medical image segmentation tasks, but designing such networks requires a lot of parameters and training data, not always available for practical problems. In this paper, inspired by traditional multi-phase convexity Mumford-Shah variational model and full approximation scheme (FAS) solving the nonlinear systems, we propose a novel variational-model-informed network (denoted as FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features. The proposed model-informed network integrates image data and mathematical models, and implements them through learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear systems, where a skip-connection is employed to fuse the multi-scale features. Secondly, we further design a convolution block to fuse the extracted features from the previous stage, resulting in the final segmentation possibility. Experimental results on three different medical image segmentation tasks show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations. Moreover, it may also be possible to train specialized network architectures that automatically satisfy some of the mathematical and physical laws in other image problems for better accuracy, faster training and improved generalization.The code is available at \url{https://github.com/zhuhui100/FASUNet}.
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
最近,利用卷积神经网络(CNNS)和变压器的深度学习表明,令人鼓舞的医学图像细分导致结果。但是,他们仍然具有挑战性,以实现有限的培训的良好表现。在这项工作中,我们通过在CNN和变压器之间引入交叉教学,为半监控医学图像分割提供了一个非常简单但有效的框架。具体而言,我们简化了从一致性正则化的经典深度共同训练交叉教学,其中网络的预测用作伪标签,直接端到端监督其他网络。考虑到CNN和变压器之间的学习范例的差异,我们在CNN和变压器之间引入了交叉教学,而不是使用CNNS。在公共基准测试中的实验表明,我们的方法优于八个现有的半监督学习方法,只需更简单的框架。值得注意的是,这项工作可能是第一次尝试将CNN和变压器组合以进行半监督的医学图像分割,并在公共基准上实现有前途的结果。该代码将发布:https://github.com/hilab-git/sl4mis。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Deep learning methods have contributed substantially to the rapid advancement of medical image segmentation, the quality of which relies on the suitable design of loss functions. Popular loss functions, including the cross-entropy and dice losses, often fall short of boundary detection, thereby limiting high-resolution downstream applications such as automated diagnoses and procedures. We developed a novel loss function that is tailored to reflect the boundary information to enhance the boundary detection. As the contrast between segmentation and background regions along the classification boundary naturally induces heterogeneity over the pixels, we propose the piece-wise two-sample t-test augmented (PTA) loss that is infused with the statistical test for such heterogeneity. We demonstrate the improved boundary detection power of the PTA loss compared to benchmark losses without a t-test component.
translated by 谷歌翻译