在域适应领域,模型性能与目标域注释的数量之间存在权衡。积极的学习,最大程度地提高了模型性能,几乎没有信息的标签数据,以方便这种情况。在这项工作中,我们提出了D2ADA,这是用于语义分割的一般活动域的适应框架。为了使模型使用最小查询标签调整到目标域,我们提出了在目标域中具有高概率密度的样品的获取标签,但源域中的概率密度较低,与现有源域标记的数据互补。为了进一步提高标签效率,我们设计了动态的调度策略,以调整域探索和模型不确定性之间的标签预算。广泛的实验表明,我们的方法的表现优于现有的活跃学习和域适应基线,这两个基准测试基准,GTA5-> CityScapes和Synthia-> CityScapes。对于目标域注释不到5%,我们的方法与完全监督的结果可比结果。我们的代码可在https://github.com/tsunghan-wu/d2ada上公开获取。
translated by 谷歌翻译
自我训练具有极大的促进域自适应语义分割,它迭代地在目标域上生成伪标签并删除网络。然而,由于现实分割数据集是高度不平衡的,因此目标伪标签通常偏置到多数类并且基本上嘈杂,导致出错和次优模型。为了解决这个问题,我们提出了一个基于区域的主动学习方法,用于在域移位下进行语义分割,旨在自动查询要标记的图像区域的小分区,同时最大化分割性能。我们的算法,通过区域杂质和预测不确定性(AL-RIPU)的主动学习,介绍了一种新的采集策略,其特征在于图像区域的空间邻接以及预测置信度。我们表明,所提出的基于地区的选择策略比基于图像或基于点的对应物更有效地使用有限预算。同时,我们在源图像上强制在像素和其最近邻居之间的局部预测一致性。此外,我们制定了负面学习损失,以提高目标领域的鉴别表现。广泛的实验表明,我们的方法只需要极少的注释几乎达到监督性能,并且大大优于最先进的方法。
translated by 谷歌翻译
尽管深入学习对监督点云语义细分的成功取得了成功,但获得大规模的逐点手动注释仍然是一个重大挑战。为了减轻巨大的注释负担,我们提出了一个基于区域和多样性的积极学习(REDAL),这是许多深度学习方法的一般框架,旨在自动选择用于标签获取的信息丰富和多样化的子场所。观察到只有一小部分带注释的区域足以通过深度学习的方式理解3D场景,我们使用SoftMax熵,颜色不连续性和结构复杂性来衡量子场所区域的信息。还开发了一种多样性的选择算法,以避免通过在查询批次中选择信息性但相似的区域而产生的多余注释。广泛的实验表明,我们的方法的表现高于先前的活跃学习策略,并且我们达到了90%的全面监督学习,而S3DIS和Semantickitti数据集则需要不到15%和5%的注释。我们的代码可在https://github.com/tsunghan-wu/redal上公开获取。
translated by 谷歌翻译
最近,无监督的域适应是一种有效的范例,用于概括深度神经网络到新的目标域。但是,仍有巨大的潜力才能达到完全监督的性能。在本文中,我们提出了一种新颖的主动学习策略,以帮助目标域中的知识转移,有效域适应。我们从观察开始,即当训练(源)和测试(目标)数据来自不同的分布时,基于能量的模型表现出自由能量偏差。灵感来自这种固有的机制,我们经验揭示了一种简单而有效的能源 - 基于能量的采样策略揭示了比需要特定架构或距离计算的现有方法的最有价值的目标样本。我们的算法,基于能量的活动域适应(EADA),查询逻辑数据组,它将域特征和实例不确定性结合到每个选择回合中。同时,通过通过正则化术语对准源域周围的目标数据紧凑的自由能,可以隐含地减少域间隙。通过广泛的实验,我们表明EADA在众所周知的具有挑战性的基准上超越了最先进的方法,具有实质性的改进,使其成为开放世界中的一个有用的选择。代码可在https://github.com/bit-da/eada获得。
translated by 谷歌翻译
We propose LiDAL, a novel active learning method for 3D LiDAR semantic segmentation by exploiting inter-frame uncertainty among LiDAR frames. Our core idea is that a well-trained model should generate robust results irrespective of viewpoints for scene scanning and thus the inconsistencies in model predictions across frames provide a very reliable measure of uncertainty for active sample selection. To implement this uncertainty measure, we introduce new inter-frame divergence and entropy formulations, which serve as the metrics for active selection. Moreover, we demonstrate additional performance gains by predicting and incorporating pseudo-labels, which are also selected using the proposed inter-frame uncertainty measure. Experimental results validate the effectiveness of LiDAL: we achieve 95% of the performance of fully supervised learning with less than 5% of annotations on the SemanticKITTI and nuScenes datasets, outperforming state-of-the-art active learning methods. Code release: https://github.com/hzykent/LiDAL.
translated by 谷歌翻译
Active域适应(ADA)查询所选目标样本的标签,以帮助将模型从相关的源域调整为目标域。由于其有希望的表现,标签成本最少,因此最近引起了人们越来越多的关注。然而,现有的ADA方法尚未完全利用查询数据的局部环境,这对ADA很重要,尤其是当域间隙较大时。在本文中,我们提出了一个局部环境感知的活动域适应性(LADA)的新框架,该框架由两个关键模块组成。本地上下文感知的活动选择(LAS)模块选择其类概率预测与邻居不一致的目标样本。局部上下文感知模型适应(LMA)模块完善了具有查询样本及其扩展的邻居的模型,并由上下文保留损失正规化。广泛的实验表明,与现有的主动选择策略相比,LAS选择了更多的信息样本。此外,配备了LMA,整个LADA方法的表现优于各种基准测试的最先进的ADA解决方案。代码可在https://github.com/tsun/lada上找到。
translated by 谷歌翻译
受益于从特定情况(源)收集的相当大的像素级注释,训练有素的语义分段模型表现得非常好,但由于大域移位而导致的新情况(目标)失败。为了缓解域间隙,先前的跨域语义分段方法始终在域对齐期间始终假设源数据和目标数据的共存。但是,在实际方案中访问源数据可能会引发隐私问题并违反知识产权。为了解决这个问题,我们专注于一个有趣和具有挑战性的跨域语义分割任务,其中仅向目标域提供训练源模型。具体地,我们提出了一种称为ATP的统一框架,其包括三种方案,即特征对准,双向教学和信息传播。首先,我们设计了课程熵最小化目标,以通过提供的源模型隐式对准目标功能与看不见的源特征。其次,除了vanilla自我训练中的正伪标签外,我们是第一个向该领域引入负伪标签的,并开发双向自我训练策略,以增强目标域中的表示学习。最后,采用信息传播方案来通过伪半监督学习进一步降低目标域内的域内差异。综合与跨城市驾驶数据集的广泛结果验证\ TextBF {ATP}产生最先进的性能,即使是需要访问源数据的方法。
translated by 谷歌翻译
Recent deep networks achieved state of the art performance on a variety of semantic segmentation tasks. Despite such progress, these models often face challenges in real world "wild tasks" where large difference between labeled training/source data and unseen test/target data exists. In particular, such difference is often referred to as "domain gap", and could cause significantly decreased performance which cannot be easily remedied by further increasing the representation power. Unsupervised domain adaptation (UDA) seeks to overcome such problem without target domain labels. In this paper, we propose a novel UDA framework based on an iterative self-training (ST) procedure, where the problem is formulated as latent variable loss minimization, and can be solved by alternatively generating pseudo labels on target data and re-training the model with these labels. On top of ST, we also propose a novel classbalanced self-training (CBST) framework to avoid the gradual dominance of large classes on pseudo-label generation, and introduce spatial priors to refine generated labels. Comprehensive experiments show that the proposed methods achieve state of the art semantic segmentation performance under multiple major UDA settings.⋆ indicates equal contribution.
translated by 谷歌翻译
语义细分是智能车辆了解环境的重要任务。当前的深度学习方法需要大量的标记数据进行培训。手动注释很昂贵,而模拟器可以提供准确的注释。但是,在实际场景中应用时,使用模拟器数据训练的语义分割模型的性能将大大降低。对于语义分割的无监督域适应性(UDA)最近引起了越来越多的研究注意力,旨在减少域间隙并改善目标域的性能。在本文中,我们提出了一种新型的基于两阶段熵的UDA方法,用于语义分割。在第一阶段,我们设计了一个阈值适应的无监督局灶性损失,以使目标域中的预测正常,该预测具有轻度的梯度中和机制,并减轻了在基于熵方法中几乎没有优化硬样品的问题。在第二阶段,我们引入了一种名为跨域图像混合(CIM)的数据增强方法,以弥合两个域的语义知识。我们的方法在合成景观和gta5-to-cityscapes上使用DeepLabV2和使用轻量级的Bisenet实现了最新的58.4%和59.6%的MIOS和59.6%的Mious。
translated by 谷歌翻译
我们考虑了主动域适应(ADA)对未标记的目标数据的问题,其中哪个子集被主动选择并给定预算限制标记。受到对域适应性源和目标之间的标签分布不匹配的关键问题的最新分析的启发,我们设计了一种方法,该方法在ADA中首次解决该问题。它的核心是一种新颖的抽样策略,该策略寻求目标数据,以最能近似整个目标分布以及代表性,多样化和不确定。然后,采样目标数据不仅用于监督学习,还用于匹配源和目标域的标签分布,从而导致了显着的性能改善。在四个公共基准测试中,我们的方法在每个适应方案中都大大优于现有方法。
translated by 谷歌翻译
For best performance, today's semantic segmentation methods use large and carefully labeled datasets, requiring expensive annotation budgets. In this work, we show that coarse annotation is a low-cost but highly effective alternative for training semantic segmentation models. Considering the urban scene segmentation scenario, we leverage cheap coarse annotations for real-world captured data, as well as synthetic data to train our model and show competitive performance compared with finely annotated real-world data. Specifically, we propose a coarse-to-fine self-training framework that generates pseudo labels for unlabeled regions of the coarsely annotated data, using synthetic data to improve predictions around the boundaries between semantic classes, and using cross-domain data augmentation to increase diversity. Our extensive experimental results on Cityscapes and BDD100k datasets demonstrate that our method achieves a significantly better performance vs annotation cost tradeoff, yielding a comparable performance to fully annotated data with only a small fraction of the annotation budget. Also, when used as pretraining, our framework performs better compared to the standard fully supervised setting.
translated by 谷歌翻译
了解驾驶场景中的雾图像序列对于自主驾驶至关重要,但是由于难以收集和注释不利天气的现实世界图像,这仍然是一项艰巨的任务。最近,自我训练策略被认为是无监督域适应的强大解决方案,通过生成目标伪标签并重新训练模型,它迭代地将模型从源域转化为目标域。但是,选择自信的伪标签不可避免地会遭受稀疏与准确性之间的冲突,这两者都会导致次优模型。为了解决这个问题,我们利用了驾驶场景的雾图图像序列的特征,以使自信的伪标签致密。具体而言,基于顺序图像数据的局部空间相似性和相邻时间对应的两个发现,我们提出了一种新型的目标域驱动的伪标签扩散(TDO-DIF)方案。它采用超像素和光学流来识别空间相似性和时间对应关系,然后扩散自信但稀疏的伪像标签,或者是由流量链接的超像素或时间对应对。此外,为了确保扩散像素的特征相似性,我们在模型重新训练阶段引入了局部空间相似性损失和时间对比度损失。实验结果表明,我们的TDO-DIF方案有助于自适应模型在两个公共可用的天然雾化数据集(超过雾气的Zurich and Forggy驾驶)上实现51.92%和53.84%的平均跨工会(MIOU),这超过了最态度ART无监督的域自适应语义分割方法。可以在https://github.com/velor2012/tdo-dif上找到模型和数据。
translated by 谷歌翻译
域的适应性是将所学的共享知识从源域转移到新的环境,即目标域。一种常见的做法是在标记的源域数据和未标记的目标域数据上训练模型。然而,由于对源域的强有力监督,学到的模型通常会偏差。大多数研究人员采用早期策略来防止过度拟合,但是由于缺乏目标域验证集,因此何时停止培训仍然是一个具有挑战性的问题。在本文中,我们提出了一种高效的自举方法,称为Adaboost学生,在培训过程中明确学习互补模型,并使用户摆脱经验的早期停止。 Adaboost学生将深入的模型学习与常规培训策略(即自适应增强)相结合,并在学习模型与数据采样器之间进行互动。我们采用一个自适应数据采样器来逐步促进硬样品学习并汇总“弱”模型以防止过度拟合。广泛的实验表明,(1)无需担心停止时间,Adaboost学生通过在培训期间通过有效的互补模型学习提供了一个强大的解决方案。 (2)Adaboost学生与大多数领域适应方法是正交的,可以将其与现有方法结合使用,以进一步改善最新性能。我们已经在三个广泛使用的场景细分域适应基准上取得了竞争成果。
translated by 谷歌翻译
传统的域自适应语义细分解决了在有限或没有其他监督下,将模型调整为新的目标域的任务。在解决输入域间隙的同时,标准域的适应设置假设输出空间没有域的变化。在语义预测任务中,通常根据不同的语义分类法标记不同的数据集。在许多现实世界中,目标域任务需要与源域施加的分类法不同。因此,我们介绍了更通用的自适应跨域语义细分(TAC)问题,从而使两个域之间的分类学不一致。我们进一步提出了一种共同解决图像级和标签级域适应的方法。在标签级别上,我们采用双边混合采样策略来增强目标域,并采用重新标记方法来统一和对齐标签空间。我们通过提出一种不确定性构造的对比度学习方法来解决图像级域间隙,从而导致更多的域不变和类别的歧义特征。我们在不同的TACS设置下广泛评估了框架的有效性:开放分类法,粗到精细的分类学和隐式重叠的分类学。我们的方法的表现超过了先前的最先进的利润,同时能够适应目标分类法。我们的实施可在https://github.com/ethruigong/tada上公开获得。
translated by 谷歌翻译
我们提出了一种新颖的方法,即沙拉,用于将预先训练的“源”域网络适应“目标”域的挑战性视觉任务,在“目标”域中注释的预算很小,标签空间的变化。此外,该任务假定由于隐私问题或其他方式,源数据无法适应。我们假设这样的系统需要共同优化(i)从目标域中选择固定数量的样本以进行注释的双重任务,以及(ii)知识从预训练的网络转移到目标域。为此,沙拉由一个新颖的引导注意转移网络(GATN)和一个主动学习功能组成。 GATN启用了从预训练的网络到目标网络的特征蒸馏,并与HAL采用的转移性和不确定性标准相辅相成。沙拉有三个关键的好处:(i)它是任务不合时宜的,可以在各种视觉任务(例如分类,分割和检测)中应用; (ii)它可以处理从预训练的源网络到目标域的输出标签空间的变化; (iii)它不需要访问源数据进行适应。我们对3个视觉任务进行了广泛的实验,即。数字分类(MNIST,SVHN,VISDA),合成(GTA5)与真实(CityScapes)图像分割和文档布局检测(PublayNet to DSSE)。我们表明,我们的无源方法(沙拉)比先前的适应方法提高了0.5%-31.3%(跨数据集和任务),该方法假设访问大量带注释的源数据以进行适应。
translated by 谷歌翻译
领域自适应分段努力生成目标域的高质量伪标签并在其上重新训练分段的趋势趋势。在这种自我训练的范式下,一些竞争性方法已寻求潜在的空间信息,该信息建立了语义类别的特征质心(又称原型),并通过与这些质心的距离确定了伪标签候选者。在本文中,我们认为潜在空间包含更多要利用的信息,从而进一步迈出了一步以利用它。首先,我们不仅使用源域原型来确定目标伪标签,而且还像大多数传统方法一样,我们在双向上产生目标域原型来降低那些可能难以理解或无法进行适应的源特征。其次,现有尝试将每个类别模拟为单个和各向同性原型,同时忽略特征分布的方差,这可能导致类似类别的混淆。为了解决这个问题,我们建议通过高斯混合模型代表每个类别,以多种和各向异性原型表示,以根据概率密度估算源域的事实分布并估算目标样品的可能性。我们将我们的方法应用于gta5-> CityScapes和Synthia-> CityScaps任务,并在平均值上分别实现61.2和62.8,这显然优于其他竞争性的自我训练方法。值得注意的是,在某些类别中,我们的方法分别遭受了“卡车”和“公共汽车”等分类混乱的影响,我们的方法分别达到了56.4和68.8,这进一步证明了我们设计的有效性。
translated by 谷歌翻译
We describe a simple method for unsupervised domain adaptation, whereby the discrepancy between the source and target distributions is reduced by swapping the lowfrequency spectrum of one with the other. We illustrate the method in semantic segmentation, where densely annotated images are aplenty in one domain (e.g., synthetic data), but difficult to obtain in another (e.g., real images). Current state-of-the-art methods are complex, some requiring adversarial optimization to render the backbone of a neural network invariant to the discrete domain selection variable. Our method does not require any training to perform the domain alignment, just a simple Fourier Transform and its inverse. Despite its simplicity, it achieves state-of-the-art performance in the current benchmarks, when integrated into a relatively standard semantic segmentation model. Our results indicate that even simple procedures can discount nuisance variability in the data that more sophisticated methods struggle to learn away. 1
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使在标记的源域上训练的模型适应未标记的目标域。在本文中,我们提出了典型的对比度适应(PROCA),这是一种无监督域自适应语义分割的简单有效的对比度学习方法。以前的域适应方法仅考虑跨各个域的阶级内表示分布的对齐,而阶层间结构关系的探索不足,从而导致目标域上的对齐表示可能不像在源上歧视的那样容易歧视。域了。取而代之的是,ProCA将类间信息纳入班级原型,并采用以班级为中心的分布对齐进行适应。通过将同一类原型与阳性和其他类原型视为实现以集体为中心的分配对齐方式的负面原型,Proca在经典领域适应任务上实现了最先进的性能,{\ em i.e. text {and} synthia $ \ to $ cityScapes}。代码可在\ href {https://github.com/jiangzhengkai/proca} {proca}获得代码
translated by 谷歌翻译
State-of-the-art 3D semantic segmentation models are trained on the off-the-shelf public benchmarks, but they often face the major challenge when these well-trained models are deployed to a new domain. In this paper, we propose an Active-and-Adaptive Segmentation (ADAS) baseline to enhance the weak cross-domain generalization ability of a well-trained 3D segmentation model, and bridge the point distribution gap between domains. Specifically, before the cross-domain adaptation stage begins, ADAS performs an active sampling operation to select a maximally-informative subset from both source and target domains for effective adaptation, reducing the adaptation difficulty under 3D scenarios. Benefiting from the rise of multi-modal 2D-3D datasets, ADAS utilizes a cross-modal attention-based feature fusion module that can extract a representative pair of image features and point features to achieve a bi-directional image-point feature interaction for better safe adaptation. Experimentally, ADAS is verified to be effective in many cross-domain settings including: 1) Unsupervised Domain Adaptation (UDA), which means that all samples from target domain are unlabeled; 2) Unsupervised Few-shot Domain Adaptation (UFDA) which means that only a few unlabeled samples are available in the unlabeled target domain; 3) Active Domain Adaptation (ADA) which means that the selected target samples by ADAS are manually annotated. Their results demonstrate that ADAS achieves a significant accuracy gain by easily coupling ADAS with self-training methods or off-the-shelf UDA works.
translated by 谷歌翻译
本文提出了一种新颖的像素级分布正则化方案(DRSL),用于自我监督的语义分割域的适应性。在典型的环境中,分类损失迫使语义分割模型贪婪地学习捕获类间变化的表示形式,以确定决策(类)边界。由于域的转移,该决策边界在目标域中未对齐,从而导致嘈杂的伪标签对自我监督域的适应性产生不利影响。为了克服这一限制,以及捕获阶层间变化,我们通过类感知的多模式分布学习(MMDL)捕获了像素级内的类内变化。因此,捕获阶层内变化所需的信息与阶层间歧视所需的信息明确分开。因此,捕获的功能更具信息性,导致伪噪声低的伪标记。这种分离使我们能够使用前者的基于跨凝结的自学习,在判别空间和多模式分布空间中进行单独的对齐。稍后,我们通过明确降低映射到同一模式的目标和源像素之间的距离来提出一种新型的随机模式比对方法。距离度量标签上计算出的距离度量损失,并从多模式建模头部反向传播,充当与分割头共享的基本网络上的正常化程序。关于合成到真实域的适应设置的全面实验的结果,即GTA-V/Synthia to CityScapes,表明DRSL的表现优于许多现有方法(MIOU的最小余量为2.3%和2.5%,用于MIOU,而合成的MIOU到CityScapes)。
translated by 谷歌翻译