频谱重建的现有方法通常学习从RGB图像到多个频带的离散映射。然而,这种建模策略忽略了光谱签名的连续性。在本文中,我们提出了神经光谱重构(NESR)来提升这种限制,通过引入新的连续光谱表示来提升这种限制。为此,我们拥抱隐式功能的概念,并利用神经网络实现参数化实施例。具体来说,我们首先采用骨干网络来提取RGB输入的空间特征。基于它,我们设计了光谱简档插值(SPI)模块和神经注意映射(NAM)模块,以丰富深度特征,其中空间谱相关涉及更好的表示。然后,我们将采样光谱频带的数量视为连续隐式功能的坐标,以便从深度特征到频谱强度来学习投影。广泛的实验表明NESR在基线方法中重建精度的明显优势。此外,NESR通过使任意数量的频谱频带作为目标输出来扩展光谱重建的灵活性。
translated by 谷歌翻译
高光谱图像(HSI)没有额外辅助图像的超分辨率仍然是由于其高维光谱图案的恒定挑战,其中学习有效的空间和光谱表示是基本问题。最近,隐式的神经表示(INR)正在进行进步,作为新颖且有效的代表,特别是在重建任务中。因此,在这项工作中,我们提出了一种基于INR的新颖的HSI重建模型,其通过将空间坐标映射到其对应的光谱辐射值值的连续函数来表示HSI。特别地,作为INR的特定实现,参数模型的参数是通过使用卷积网络在特征提取的超通知来预测的。它使连续功能以内容感知方式将空间坐标映射到像素值。此外,周期性空间编码与重建过程深度集成,这使得我们的模型能够恢复更高的频率细节。为了验证我们模型的功效,我们在三个HSI数据集(洞穴,NUS和NTIRE2018)上进行实验。实验结果表明,与最先进的方法相比,该建议的模型可以实现竞争重建性能。此外,我们提供了对我们模型各个组件的效果的消融研究。我们希望本文可以服务器作为未来研究的效率参考。
translated by 谷歌翻译
光谱超分辨率(SSR)是指从RGB对应物中恢复的高光谱图像(HSI)。由于SSR问题的一对多性,可以将单个RGB图像恢复到许多HSIS。解决这个暗示问题的关键是插入多源以前的信息,如自然RGB空间上下文的上下文,深度特征或固有的HSI统计事先等,以提高重建的置信度和保真度光谱。然而,大多数目前的方法只考虑设计定制的卷积神经网络(CNN)的一般和有限的前瞻,这导致无法有效地减轻不良程度。为解决有问题的问题,我们为SSR提出了一个新颖的全面的先前嵌入关系网络(HPRN)。基本上,核心框架由几个多剩余关系块(MRB)进行多种组装,其完全便于RGB信号之前的低频内容的传输和利用。创新性地,引入了RGB输入的语义之前,以识别类别属性,并且向前提出了语义驱动的空间关系模块(SSRM)以使用语义嵌入关系矩阵在聚类的类似特征之间执行特征聚合。此外,我们开发了一种基于变换器的通道关系模块(TCRM),其习惯使用标量作为先前深度特征中的频道方面关系的描述符,并用某些向量替换为变换器特征交互,支持表示更加歧视。为了保持高光谱频带之间的数学相关和光谱一致性,将二阶的先前约束(SOPC)结合到丢失功能中以引导HSI重建过程。
translated by 谷歌翻译
高光谱成像由于其在捕获丰富的空间和光谱信息的能力上提供了多功能应用,这对于识别物质至关重要。但是,获取高光谱图像的设备昂贵且复杂。因此,已经通过直接从低成本,更多可用的RGB图像重建高光谱信息来提出了许多替代光谱成像方法。我们详细研究了来自广泛的RGB图像的这些最先进的光谱重建方法。对25种方法的系统研究和比较表明,尽管速度较低,但大多数数据驱动的深度学习方法在重建精度和质量方面都优于先前的方法。这项全面的审查可以成为同伴研究人员的富有成果的参考来源,从而进一步启发了相关领域的未来发展方向。
translated by 谷歌翻译
具有窄光谱带的高光谱图像(HSI)可以捕获丰富的光谱信息,但它在该过程中牺牲其空间分辨率。最近提出了许多基于机器学习的HSI超分辨率(SR)算法。然而,这些方法的基本限制之一是它们高度依赖于图像和相机设置,并且只能学会用另一个特定设置用一个特定的设置映射输入的HSI。然而,由于HSI相机的多样性,不同的相机捕获具有不同光谱响应函数和频带编号的图像。因此,现有的基于机器学习的方法无法学习用于各种输入输出频带设置的超声波HSIS。我们提出了一种基于元学习的超分辨率(MLSR)模型,其可以在任意数量的输入频带'峰值波长下采用HSI图像,并产生具有任意数量的输出频带'峰值波长的SR HSIS。我们利用NTIRE2020和ICVL数据集训练并验证MLSR模型的性能。结果表明,单个提出的模型可以在任意输入 - 输出频带设置下成功生成超分辨的HSI频段。结果更好或至少与在特定输入输出频带设置上单独培训的基线相当。
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
随着深度学习技术的发展,基于卷积神经网络的多光谱图像超分辨率方法最近取得了很大的进展。然而,由于高光谱数据的高维和复谱特性,单个高光谱图像超分辨率仍然是一个具有挑战性的问题,这使得难以同时捕获空间和光谱信息。要处理此问题,我们提出了一种新的反馈精确的本地 - 全球网络(FRLGN),用于超光谱图像的超级分辨率。具体而言,我们开发新的反馈结构和本地全局频谱块,以减轻空间和光谱特征提取的难度。反馈结构可以传输高电平信息以指导低级特征的生成过程,其通过具有有限展开的经常性结构实现。此外,为了有效地使用所传回的高电平信息,构造局部全局频谱块以处理反馈连接。本地 - 全局频谱块利用反馈高级信​​息来校正来自局部光谱频带的低级功能,并在全局光谱频带之间产生强大的高级表示。通过结合反馈结构和局部全局光谱块,FRLGN可以充分利用光谱带之间的空间光谱相关性,并逐渐重建高分辨率高光谱图像。 FRLGN的源代码在https://github.com/tangzhenjie/frlgn上获得。
translated by 谷歌翻译
为了解决高光谱图像超分辨率(HSISR)的不良问题,通常方法是使用高光谱图像(HSIS)的先前信息作为正则化术语来限制目标函数。使用手工制作前沿的基于模型的方法无法完全表征HSI的性质。基于学习的方法通常使用卷积神经网络(CNN)来学习HSI的隐式前导者。然而,CNN的学习能力是有限的,它仅考虑HSI的空间特性并忽略光谱特性,并且卷积对远程依赖性建模无效。还有很多改进的空间。在本文中,我们提出了一种新颖的HSISR方法,该方法使用变压器而不是CNN来学习HSI之前。具体地,我们首先使用近端梯度算法来解决HSISR模型,然后使用展开网络来模拟迭代解决方案过程。变压器的自我注意层使其具有空间全局互动的能力。此外,我们在变压器层后面添加3D-CNN,以更好地探索HSIS的时空相关性。两个广泛使用的HSI数据集和实际数据集的定量和视觉结果证明,与所有主流算法相比,所提出的方法实现了相当大的增益,包括最竞争力的传统方法和最近提出的基于深度学习的方法。
translated by 谷歌翻译
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses, including a high-resolution camera surrounded by multiple low-resolution cameras. The performance of existing methods is still limited, as they produce either blurry results on plain textured areas or distortions around depth discontinuous boundaries. To tackle this challenge, we propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input from two complementary and parallel perspectives. Specifically, one module regresses a spatially consistent intermediate estimation by learning a deep multidimensional and cross-domain feature representation, while the other module warps another intermediate estimation, which maintains the high-frequency textures, by propagating the information of the high-resolution view. We finally leverage the advantages of the two intermediate estimations adaptively via the learned attention maps, leading to the final high-resolution LF image with satisfactory results on both plain textured areas and depth discontinuous boundaries. Besides, to promote the effectiveness of our method trained with simulated hybrid data on real hybrid data captured by a hybrid LF imaging system, we carefully design the network architecture and the training strategy. Extensive experiments on both real and simulated hybrid data demonstrate the significant superiority of our approach over state-of-the-art ones. To the best of our knowledge, this is the first end-to-end deep learning method for LF reconstruction from a real hybrid input. We believe our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
translated by 谷歌翻译
深度学习的快速发展为高光谱图像(HSI)的端到端重建提供了更好的解决方案。但是,现有的基于学习的方法有两个主要缺陷。首先,具有自我注意力的网络通常会牺牲内部分辨率,以平衡模型性能与复杂性,失去细粒度的高分辨率(HR)功能。其次,即使专注于空间光谱域学习(SDL)的优化也会收敛到理想解决方案,但重建的HSI与真相之间仍然存在显着的视觉差异。因此,我们为HSI重建提出了一个高分辨率双域学习网络(HDNET)。一方面,提出的及其有效特征融合的人力资源空间光谱注意模块可提供连续且精细的像素级特征。另一方面,引入了频域学习(FDL),以供HSI重建以缩小频域差异。动态FDL监督迫使模型重建细粒频率,并补偿由像素级损失引起的过度平滑和失真。我们的HDNET相互促进HSI感知质量的人力资源像素水平的注意力和频率级别的完善。广泛的定量和定性评估实验表明,我们的方法在模拟和真实的HSI数据集上实现了SOTA性能。代码和模型将在https://github.com/caiyuanhao1998/mst上发布
translated by 谷歌翻译
在本文中,我们通过深度学习研究了高光谱(HS)图像空间超分辨率的问题。特别是,我们专注于如何有效有效地嵌入HS图像的高维空间光谱信息。具体而言,与采用经验设计的网络模块的现有方法相反,我们将HS嵌入为一组精心定义的HS嵌入事件的后验分布的近似聚合。然后,我们将所提出的特征嵌入方案纳入源符合的超级分辨率框架中,该框架具有物理性开采,从而产生了轻质的PDE-NET,其中高分辨率(HR)HS图像是从输入低 - 低 - 之间的残差迭代完善的。分辨率(LR)HS图像和伪LR-HS图像通过概率启发的HS嵌入从重建的HR-HS图像中退化。在三个常见基准数据集上进行的广泛实验表明,PDE-NET比最先进的方法实现了卓越的性能。此外,这种网络的概率特征可以提供网络输出的认知不确定性,当用于其他基于HS图像的应用程序时,这可能会带来其他好处。该代码将在https://github.com/jinnh/pde-net上公开获得。
translated by 谷歌翻译
如今,由于屏幕共享,远程合作和在线教育的广泛应用,屏幕内容存在爆炸性增长。为了匹配有限终端带宽,可以缩小高分辨率(HR)屏幕内容并压缩。在接收器侧,低分辨率(LR)屏幕内容图像(SCI)的超分辨率(SR)由HR显示器或用户缩小以供详细观察。然而,由于图像特性非常不同的图像特性以及在任意尺度下浏览的SCI浏览要求,图像SR方法主要针对自然图像设计不概括SCI。为此,我们为SCISR提出了一种新颖的隐式变压器超分辨率网络(ITSRN)。对于任意比率的高质量连续SR,通过所提出的隐式变压器从密钥坐标处的图像特征推断出查询坐标处的像素值,并且提出了隐式位置编码方案来聚合与查询相似的相邻像素值。使用LR和HR SCI对构建基准SCI1K和SCI1K压缩数据集。广泛的实验表明,提出的ITSRN显着优于压缩和未压缩的SCI的几种竞争连续和离散SR方法。
translated by 谷歌翻译
How to represent an image? While the visual world is presented in a continuous manner, machines store and see the images in a discrete way with 2D arrays of pixels. In this paper, we seek to learn a continuous representation for images. Inspired by the recent progress in 3D reconstruction with implicit neural representation, we propose Local Implicit Image Function (LIIF), which takes an image coordinate and the 2D deep features around the coordinate as inputs, predicts the RGB value at a given coordinate as an output. Since the coordinates are continuous, LIIF can be presented in arbitrary resolution. To generate the continuous representation for images, we train an encoder with LIIF representation via a self-supervised task with superresolution. The learned continuous representation can be presented in arbitrary resolution even extrapolate to ×30 higher resolution, where the training tasks are not provided. We further show that LIIF representation builds a bridge between discrete and continuous representation in 2D, it naturally supports the learning tasks with size-varied image ground-truths and significantly outperforms the method with resizing the ground-truths. Our project page with code is at https://yinboc.github.io/liif/.
translated by 谷歌翻译
高光谱图像(HSI)重建旨在从编码光圈快照频谱成像(CASSI)系统中的2D测量中恢复3D空间光谱信号。 HSI表示在光谱维度上具有高度相似和相关性。建模频谱间相互作用对HSI重建有益。然而,现有的基于CNN的方法显示了捕获光谱和远程依赖性的限制。此外,HSI信息由CASSI中的编码孔径(物理掩码)调制。尽管如此,目前的算法尚未完全探索掩模的掩模恢复的引导效果。在本文中,我们提出了一种新颖的框架,掩模引导的光谱 - 明智变压器(MST),用于HSI重建。具体地,我们介绍了一种频谱,用于将每个光谱特征视为令牌的频谱 - 明智的多头自我注意(S-MSA)并计算沿光谱尺寸的自我关注。此外,我们自定义一个掩模导向机构(mm),指示S-MSA,以注意具有高保真谱表示的空间区域。广泛的实验表明,我们的MST在模拟和真实HSI数据集上显着优于最先进的(SOTA)方法,同时需要大幅更便宜的计算和内存成本。
translated by 谷歌翻译
Learning continuous image representations is recently gaining popularity for image super-resolution (SR) because of its ability to reconstruct high-resolution images with arbitrary scales from low-resolution inputs. Existing methods mostly ensemble nearby features to predict the new pixel at any queried coordinate in the SR image. Such a local ensemble suffers from some limitations: i) it has no learnable parameters and it neglects the similarity of the visual features; ii) it has a limited receptive field and cannot ensemble relevant features in a large field which are important in an image; iii) it inherently has a gap with real camera imaging since it only depends on the coordinate. To address these issues, this paper proposes a continuous implicit attention-in-attention network, called CiaoSR. We explicitly design an implicit attention network to learn the ensemble weights for the nearby local features. Furthermore, we embed a scale-aware attention in this implicit attention network to exploit additional non-local information. Extensive experiments on benchmark datasets demonstrate CiaoSR significantly outperforms the existing single image super resolution (SISR) methods with the same backbone. In addition, the proposed method also achieves the state-of-the-art performance on the arbitrary-scale SR task. The effectiveness of the method is also demonstrated on the real-world SR setting. More importantly, CiaoSR can be flexibly integrated into any backbone to improve the SR performance.
translated by 谷歌翻译
深度映射记录场景中的视点和对象之间的距离,这在许多真实应用程序中起着关键作用。然而,消费者级RGB-D相机捕获的深度图遭受了低空间分辨率。引导深度地图超分辨率(DSR)是解决此问题的流行方法,该方法试图从输入的低分辨率(LR)深度及其耦合的HR RGB图像中恢复高分辨率(HR)深度映射和作为指引。引导DSR最具挑战性的问题是如何正确选择一致的结构并传播它们,并正确处理不一致的结构。在本文中,我们提出了一种用于引导DSR的新型关注的分层多模态融合(AHMF)网络。具体地,为了有效地提取和组合来自LR深度和HR引导的相关信息,我们提出了一种基于多模态注意力的融合(MMAF)策略,包括分层卷积层,包括特征增强块,以选择有价值的功能和特征重新校准块来统一不同外观特征的方式的相似性度量。此外,我们提出了一个双向分层特征协作(BHFC)模块,以完全利用多尺度特征之间的低级空间信息和高级结构信息。实验结果表明,在重建精度,运行速度和记忆效率方面,我们的方法优于最先进的方法。
translated by 谷歌翻译
本文解决了高光谱(HS)图像denoising的具有挑战性的问题。与现有的基于深度学习的方法不同,通常采用复杂的网络体系结构或经验堆叠现成的模块以提高性能,我们专注于捕获HS图像的高维特性的高效提取方式。具体来说,基于理论分析,提高由展开的卷积内核形成的矩阵的排名可以促进特征多样性,我们建议分别执行1卷卷积的降级低维卷积集(Re-Convset)沿着HS图像并排的三个维度,然后通过可学习的压缩层汇总所得的空间光谱嵌入。重新汇率不仅了解HS图像的不同空间光谱特征,而且还降低了网络的参数和复杂性。然后,我们将重新汇合纳入广泛使用的U-NET体系结构中,以构建HS图像Denoisising方法。令人惊讶的是,在定量指标,视觉结果和效率方面,我们观察到这样的简洁框架在很大程度上优于最新方法。我们相信我们的工作可能会阐明基于深度学习的HS图像处理和分析。
translated by 谷歌翻译
Depth map super-resolution (DSR) has been a fundamental task for 3D computer vision. While arbitrary scale DSR is a more realistic setting in this scenario, previous approaches predominantly suffer from the issue of inefficient real-numbered scale upsampling. To explicitly address this issue, we propose a novel continuous depth representation for DSR. The heart of this representation is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance field modulated by arbitrarily upsampled target gridding, through which the geometric information is explicitly introduced into feature aggregation and target generation. Furthermore, bricking with GSA, we present a transformer-style backbone named GeoDSR, which possesses a principled way to construct the functional mapping between local coordinates and the high-resolution output results, empowering our model with the advantage of arbitrary shape transformation ready to help diverse zooming demand. Extensive experimental results on standard depth map benchmarks, e.g., NYU v2, have demonstrated that the proposed framework achieves significant restoration gain in arbitrary scale depth map super-resolution compared with the prior art. Our codes are available at https://github.com/nana01219/GeoDSR.
translated by 谷歌翻译
光谱压缩成像(SCI)能够将高维高光谱图像编码为2D测量,然后使用算法来重建时空光谱数据处。目前,SCI的主要瓶颈是重建算法,最新的(SOTA)重建方法通常面临长期重建时间和/或细节恢复不良的问题。在本文中,我们提出了一个新型的混合网络模块,即CCOT(卷积和上下文变压器)块,该模块可以同时获得卷积的感应偏见和强大的变压器建模能力,并有助于提高重建质量以提高重建质量还原细节。我们将提出的CCOT块集成到基于广义交替投影算法的深层展开框架中,并进一步提出GAP-CCOT网络。通过大量合成和真实数据的实验,我们提出的模型可实现更高的重建质量($> $> $> $> $ 2db的PSNR在模拟基准数据集中)和比现有SOTA算法更短的运行时间。代码和模型可在https://github.com/ucaswangls/gap-ccot上公开获得。
translated by 谷歌翻译
Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects:(1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.
translated by 谷歌翻译