近年来,提出了基于培训数据中毒的许多后门攻击。然而,在实践中,这些后门攻击容易受到图像压缩的影响。当压缩后门实例时,将销毁特定后门触发器的特征,这可能导致后门攻击性能恶化。在本文中,我们提出了一种基于特征一致性培训的压缩后门攻击。据我们所知,这是第一个对图像压缩强大的后门攻击。首先,将返回码图像及其压缩版本输入深神经网络(DNN)进行培训。然后,通过DNN的内部层提取每个图像的特征。接下来,最小化后门图像和其压缩版本之间的特征差异。结果,DNN将压缩图像的特征视为特征空间中的后门图像的特征。培训后,对抗DNN的后门攻击是对图像压缩的强大。此外,我们考虑了三种不同的图像按压(即,JPEG,JPEG2000,WEBP),使得后门攻击对多个图像压缩算法具有鲁棒性。实验结果表明了拟议的后门攻击的有效性和稳健性。当后门实例被压缩时,常见后攻击攻击的攻击成功率低于10%,而我们压缩后门的攻击成功率大于97%。即使在低压缩质量压缩后,压缩攻击也仍然是坚固的。此外,广泛的实验表明,我们的压缩后卫攻击具有抗拒未在训练过程中使用的图像压缩的泛化能力。
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
Transforming off-the-shelf deep neural network (DNN) models into dynamic multi-exit architectures can achieve inference and transmission efficiency by fragmenting and distributing a large DNN model in edge computing scenarios (e.g., edge devices and cloud servers). In this paper, we propose a novel backdoor attack specifically on the dynamic multi-exit DNN models. Particularly, we inject a backdoor by poisoning one DNN model's shallow hidden layers targeting not this vanilla DNN model but only its dynamically deployed multi-exit architectures. Our backdoored vanilla model behaves normally on performance and cannot be activated even with the correct trigger. However, the backdoor will be activated when the victims acquire this model and transform it into a dynamic multi-exit architecture at their deployment. We conduct extensive experiments to prove the effectiveness of our attack on three structures (ResNet-56, VGG-16, and MobileNet) with four datasets (CIFAR-10, SVHN, GTSRB, and Tiny-ImageNet) and our backdoor is stealthy to evade multiple state-of-the-art backdoor detection or removal methods.
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译
最近,后门攻击已成为对深神经网络(DNN)模型安全性的新兴威胁。迄今为止,大多数现有研究都集中于对未压缩模型的后门攻击。尽管在实际应用中广泛使用的压缩DNN的脆弱性尚未得到利用。在本文中,我们建议研究和发展针对紧凑型DNN模型(RIBAC)的强大和不可感知的后门攻击。通过对重要设计旋钮进行系统分析和探索,我们提出了一个框架,该框架可以有效地学习适当的触发模式,模型参数和修剪口罩。从而同时达到高触发隐形性,高攻击成功率和高模型效率。跨不同数据集的广泛评估,包括针对最先进的防御机制的测试,证明了RIBAC的高鲁棒性,隐身性和模型效率。代码可从https://github.com/huyvnphan/eccv2022-ribac获得
translated by 谷歌翻译
后门攻击已成为深度神经网络(DNN)的主要安全威胁。虽然现有的防御方法在检测或擦除后以后展示了有希望的结果,但仍然尚不清楚是否可以设计强大的培训方法,以防止后门触发器首先注入训练的模型。在本文中,我们介绍了\ emph {反后门学习}的概念,旨在培训\ emph {Clean}模型给出了后门中毒数据。我们将整体学习过程框架作为学习\ emph {clean}和\ emph {backdoor}部分的双重任务。从这种观点来看,我们确定了两个后门攻击的固有特征,因为他们的弱点2)后门任务与特定类(后门目标类)相关联。根据这两个弱点,我们提出了一般学习计划,反后门学习(ABL),在培训期间自动防止后门攻击。 ABL引入了标准培训的两级\ EMPH {梯度上升}机制,帮助分离早期训练阶段的后台示例,2)在后续训练阶段中断后门示例和目标类之间的相关性。通过对多个基准数据集的广泛实验,针对10个最先进的攻击,我们经验证明,后卫中毒数据上的ABL培训模型实现了与纯净清洁数据训练的相同性能。代码可用于\ url {https:/github.com/boylyg/abl}。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
后门攻击威胁着深度神经网络(DNNS)。对于隐身性,研究人员提出了清洁标签的后门攻击,这要求对手不要更改中毒训练数据集的标签。由于正确的图像标签对,清洁标签的设置使攻击更加隐秘,但仍然存在一些问题:首先,传统的中毒训练数据方法无效;其次,传统的触发器并不是仍然可感知的隐形。为了解决这些问题,我们提出了一种两相和特定图像的触发器生成方法,以增强清洁标签的后门攻击。我们的方法是(1)功能强大:我们的触发器都可以同时促进后门攻击中的两个阶段(即后门植入和激活阶段)。 (2)隐身:我们的触发器是从每个图像中生成的。它们是特定于图像的而不是固定触发器。广泛的实验表明,我们的方法可以达到奇妙的攻击成功率〜(98.98%),中毒率低(5%),在许多评估指标下高隐身,并且对后门防御方法有抵抗力。
translated by 谷歌翻译
在产生无形的后门攻击中毒数据期间,特征空间转换操作往往会导致一些中毒特征的丧失,并削弱了与触发器和目标标签之间的源图像之间的映射关系,从而导致需要更高的中毒率以实现相应的后门攻击成功率。为了解决上述问题,我们首次提出了功能修复的想法,并引入了盲水印技术,以修复在中毒数据中损失的中毒特征。在确保一致的标签的前提下,我们提出了基于功能维修的低毒速率看不见的后门攻击,名为FRIB。从上面的设计概念中受益,新方法增强了源图像与触发器和目标标签之间的映射关系,并增加了误导性DNN的程度,从而获得了高后门攻击成功率,中毒率非常低。最终,详细的实验结果表明,在所有MNIST,CIFAR10,GTSRB和Imagenet数据集中实现了高成功攻击成功率的高成功率的目标。
translated by 谷歌翻译
典型的深神经网络(DNN)后门攻击基于输入中嵌入的触发因素。现有的不可察觉的触发因素在计算上昂贵或攻击成功率低。在本文中,我们提出了一个新的后门触发器,该扳机易于生成,不可察觉和高效。新的触发器是一个均匀生成的三维(3D)二进制图案,可以水平和/或垂直重复和镜像,并将其超级贴在三通道图像上,以训练后式DNN模型。新型触发器分散在整个图像中,对单个像素产生微弱的扰动,但共同拥有强大的识别模式来训练和激活DNN的后门。我们还通过分析表明,随着图像的分辨率提高,触发因素越来越有效。实验是使用MNIST,CIFAR-10和BTSR数据集上的RESNET-18和MLP模型进行的。在无遗象的方面,新触发的表现优于现有的触发器,例如Badnet,Trojaned NN和隐藏的后门。新的触发因素达到了几乎100%的攻击成功率,仅将分类准确性降低了不到0.7%-2.4%,并使最新的防御技术无效。
translated by 谷歌翻译
后门(特洛伊木马)攻击正在对深度神经网络(DNN)产生威胁。每当来自任何源类的测试样本都嵌入后门图案时,DNN被攻击将预测到攻击者期望的目标类;在正确分类干净(无攻击)测试样本时。现有的后门防御在检测到DNN是攻击和逆向工程的“培训后”制度的反向工程方面取得了成功:防御者可以访问要检查的DNN和独立收集的小型清洁数据集,但是无法访问DNN的(可能中毒)培训集。然而,这些防御既不触发后门映射的行为也不抓住罪魁祸首,也不是在试验时间下减轻后门攻击。在本文中,我们提出了一个“飞行中的”防范反向攻击对图像分类的攻击,其中1)检测在试验时间时使用后门触发的使用; 2)Infers为检测到的触发器示例中的原始原点(源类)。我们防御的有效性是针对不同强大的后门攻击实验证明的。
translated by 谷歌翻译
在现实世界应用中的深度神经网络(DNN)的成功受益于丰富的预训练模型。然而,回溯预训练模型可以对下游DNN的部署构成显着的特洛伊木马威胁。现有的DNN测试方法主要旨在在对抗性设置中找到错误的角壳行为,但未能发现由强大的木马攻击所制作的后门。观察特洛伊木马网络行为表明,它们不仅由先前的工作所提出的单一受损神经元反射,而且归因于在多个神经元的激活强度和频率中的关键神经路径。这项工作制定了DNN后门测试,并提出了录音机框架。通过少量良性示例的关键神经元的差异模糊,我们识别特洛伊木马路径,特别是临界人,并通过模拟所识别的路径中的关键神经元来产生后门测试示例。广泛的实验表明了追索者的优越性,比现有方法更高的检测性能。通过隐秘的混合和自适应攻击来检测到后门的录音机更好,现有方法无法检测到。此外,我们的实验表明,录音所可能会揭示模型动物园中的模型的潜在潜在的背面。
translated by 谷歌翻译
Open software supply chain attacks, once successful, can exact heavy costs in mission-critical applications. As open-source ecosystems for deep learning flourish and become increasingly universal, they present attackers previously unexplored avenues to code-inject malicious backdoors in deep neural network models. This paper proposes Flareon, a small, stealthy, seemingly harmless code modification that specifically targets the data augmentation pipeline with motion-based triggers. Flareon neither alters ground-truth labels, nor modifies the training loss objective, nor does it assume prior knowledge of the victim model architecture, training data, and training hyperparameters. Yet, it has a surprisingly large ramification on training -- models trained under Flareon learn powerful target-conditional (or "any2any") backdoors. The resulting models can exhibit high attack success rates for any target choices and better clean accuracies than backdoor attacks that not only seize greater control, but also assume more restrictive attack capabilities. We also demonstrate the effectiveness of Flareon against recent defenses. Flareon is fully open-source and available online to the deep learning community: https://github.com/lafeat/flareon.
translated by 谷歌翻译
大量证据表明,深神经网络(DNN)容易受到后门攻击的影响,这激发了后门检测方法的发展。现有的后门检测方法通常是针对具有单个特定类型(例如基于补丁或基于扰动)的后门攻击而定制的。但是,在实践中,对手可能会产生多种类型的后门攻击,这挑战了当前的检测策略。基于以下事实:对抗性扰动与触发模式高度相关,本文提出了自适应扰动生成(APG)框架,以通过自适应注射对抗性扰动来检测多种类型的后门攻击。由于不同的触发模式在相同的对抗扰动下显示出高度多样的行为,因此我们首先设计了全球到本地策略,以通过调整攻击的区域和预算来适应多种类型的后门触发器。为了进一步提高扰动注入的效率,我们引入了梯度引导的掩模生成策略,以寻找最佳区域以进行对抗攻击。在多个数据集(CIFAR-10,GTSRB,Tiny-Imagenet)上进行的广泛实验表明,我们的方法以大幅度优于最先进的基线(+12%)。
translated by 谷歌翻译
已知深层神经网络(DNN)容易受到后门攻击和对抗攻击的影响。在文献中,这两种攻击通常被视为明显的问题并分别解决,因为它们分别属于训练时间和推理时间攻击。但是,在本文中,我们发现它们之间有一个有趣的联系:对于具有后门种植的模型,我们观察到其对抗性示例具有与触发样品相似的行为,即都激活了同一DNN神经元的子集。这表明将后门种植到模型中会严重影响模型的对抗性例子。基于这一观察结果,我们设计了一种新的对抗性微调(AFT)算法,以防止后门攻击。我们从经验上表明,在5次最先进的后门攻击中,我们的船尾可以有效地擦除后门触发器,而无需在干净的样品上明显的性能降解,并显着优于现有的防御方法。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNN)容易受到后门攻击的影响,后门攻击会导致DNN的恶意行为,当时特定的触发器附在输入图像上时。进一步证明,感染的DNN具有一系列通道,与正常通道相比,该通道对后门触发器更敏感。然后,将这些通道修剪可有效缓解后门行为。要定位这些通道,自然要考虑其Lipschitzness,这可以衡量他们对输入上最严重的扰动的敏感性。在这项工作中,我们介绍了一个名为Channel Lipschitz常数(CLC)的新颖概念,该概念定义为从输入图像到每个通道输出的映射的Lipschitz常数。然后,我们提供经验证据,以显示CLC(UCLC)上限与通道激活的触发激活变化之间的强相关性。由于可以从重量矩阵直接计算UCLC,因此我们可以以无数据的方式检测潜在的后门通道,并在感染的DNN上进行简单修剪以修复模型。提出的基于lipschitzness的通道修剪(CLP)方法非常快速,简单,无数据且可靠,可以选择修剪阈值。进行了广泛的实验来评估CLP的效率和有效性,CLP的效率和有效性也可以在主流防御方法中获得最新的结果。源代码可在https://github.com/rkteddy/channel-lipschitzness基于普通范围内获得。
translated by 谷歌翻译
The advances in deep learning (DL) techniques have the potential to deliver transformative technological breakthroughs to numerous complex tasks in modern power systems that suffer from increasing uncertainty and nonlinearity. However, the vulnerability of DL has yet to be thoroughly explored in power system tasks under various physical constraints. This work, for the first time, proposes a novel physics-constrained backdoor poisoning attack, which embeds the undetectable attack signal into the learned model and only performs the attack when it encounters the corresponding signal. The paper illustrates the proposed attack on the real-time fault line localization application. Furthermore, the simulation results on the 68-bus power system demonstrate that DL-based fault line localization methods are not robust to our proposed attack, indicating that backdoor poisoning attacks pose real threats to DL implementations in power systems. The proposed attack pipeline can be easily generalized to other power system tasks.
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNN)容易受到后门攻击的影响。感染的模型正常在良性输入上行为,而其预测将被迫对对抗数据进行攻击特定目标。已经开发了几种检测方法来区分投入来防御这种攻击。这些防御依赖的常见假设是受感染模型提取的清洁和对抗进口的潜在表示之间存在大的统计差异。但是,虽然缺乏假设是真实的重要性,但缺乏全面的研究。在本文中,我们专注于它并研究以下相关问题:1)统计差异的性质是什么? 2)如何在不损害攻击强度的情况下有效减少它们? 3)这种减少对基于差异的防御有何影响?我们的工作是在三个问题上进行的。首先,通过引入最大平均差异(MMD)作为指标,我们确定多级表示的统计差异都是大的,而不仅仅是最高级别。然后,我们通过在训练后门模型期间向损耗功能添加多级MMD约束来提出统计差异减少方法(SDRM),以有效降低差异。最后,检查了三种典型的基于差异的检测方法。这些防御的F1分数下降到定期训练的后门型号的90%-100%,在所有两个数据集,四个模型架构和四种攻击方法上用SDRM培训的型号上的60%-70%。结果表明,所提出的方法可用于增强现有攻击以逃避后门检测算法。
translated by 谷歌翻译
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
translated by 谷歌翻译
AI安全社区的一个主要目标是为现实世界应用安全可靠地生产和部署深入学习模型。为此,近年来,在生产阶段(或培训阶段)和相应的防御中,基于数据中毒基于深度神经网络(DNN)的后门攻击以及相应的防御。具有讽刺意味的是,部署阶段的后门攻击,这些攻击通常可以在不专业用户的设备中发生,因此可以说是在现实世界的情景中威胁要威胁,得以更少的关注社区。我们将这种警惕的不平衡归因于现有部署阶段后门攻击算法的弱实用性以及现实世界攻击示范的不足。为了填补空白,在这项工作中,我们研究了对DNN的部署阶段后门攻击的现实威胁。我们基于普通使用的部署阶段攻击范式 - 对抗对抗权重攻击的研究,主体选择性地修改模型权重,以将后台嵌入到部署的DNN中。为了实现现实的实用性,我们提出了第一款灰度盒和物理可实现的重量攻击算法,即替换注射,即子网替换攻击(SRA),只需要受害者模型的架构信息,并且可以支持现实世界中的物理触发器。进行了广泛的实验模拟和系统级真实的世界攻击示范。我们的结果不仅提出了所提出的攻击算法的有效性和实用性,还揭示了一种新型计算机病毒的实际风险,这些计算机病毒可能会广泛传播和悄悄地将后门注入用户设备中的DNN模型。通过我们的研究,我们要求更多地关注DNN在部署阶段的脆弱性。
translated by 谷歌翻译