Video-and-language pre-training has shown promising results for learning generalizable representations. Most existing approaches usually model video and text in an implicit manner, without considering explicit structural representations of the multi-modal content. We denote such form of representations as structural knowledge, which express rich semantics of multiple granularities. There are related works that propose object-aware approaches to inject similar knowledge as inputs. However, the existing methods usually fail to effectively utilize such knowledge as regularizations to shape a superior cross-modal representation space. To this end, we propose a Cross-modaL knOwledge-enhanced Pre-training (CLOP) method with Knowledge Regularizations. There are two key designs of ours: 1) a simple yet effective Structural Knowledge Prediction (SKP) task to pull together the latent representations of similar videos; and 2) a novel Knowledge-guided sampling approach for Contrastive Learning (KCL) to push apart cross-modal hard negative samples. We evaluate our method on four text-video retrieval tasks and one multi-choice QA task. The experiments show clear improvements, outperforming prior works by a substantial margin. Besides, we provide ablations and insights of how our methods affect the latent representation space, demonstrating the value of incorporating knowledge regularizations into video-and-language pre-training.
translated by 谷歌翻译
构建一个通用视频语言模型,用于解决各种视频理解任务(例如,文本视频检索,视频问答)是对机器学习领域的开放挑战。为了实现这一目标,最近的尝试训练模型,通常由单峰和跨模式的特征编码器组成,并具有受监督或成对的对比度的预文本任务。尽管提供了有吸引力的通用性,但最终的模型必须在效率和性能之间妥协。我们认为这些缺陷是由它们的预训练策略\ Textemdash引起的,它们不能很好地对齐和融合不同方式的特征。然后,我们将三叶草(一种相关的视频预培训方法)介绍给一个通用的视频语言模型,该模型用于解决既不效率也不妥协的多个视频理解任务。它通过新的三模式比对预训练任务来改善跨模式特征对齐和融合。此外,我们建议通过合并蒙面样品的学习和新颖的成对排名损失来增强三模式对齐。三叶草表现出了出色的一般性。它在多个下游任务上建立了新的最新技术,包括零射击和微调设置的三个检索任务,以及八个视频问答任务。代码和预培训模型将在https://github.com/leeyn-43/clover上发布。
translated by 谷歌翻译
视频和语言预培训表明对各种下游任务有望改善。最先前的方法捕获与基于变换器的多模式编码器的跨模型交互,不完全解决单向视频和文本特征之间的错位。此外,学习细粒度的视觉语言对准通常需要离上的对象检测器来提供对象信息,这是由检测器有限的词汇和昂贵的计算成本的瓶颈。我们建议对齐和提示:一种高效有效的视频和语言预训练框架,具有更好的跨模型对齐。首先,我们介绍了一个视频文本对比(VTC)丢失,以对准实例级别的单峰视频文本功能,从而缓解跨模型交互的建模。然后,我们提出了一种新的视觉接地预训练任务,提示实体建模(PEM),旨在学习细粒度的区域实体对齐。为实现这一目标,我们首先介绍一个实体发射模块,该模块用VTC培训,以产生与实体名称实例化的视频裁剪和文本提示之间的相似性。 PEM任务然后询问模型以预测随机选择的视频作物的实体伪标签(I.E〜归一化相似度分数)。由此产生的预先训练的模型在文本 - 视频检索和VideoQ上实现了最先进的性能,通过大幅度的边距表现优于现有的工作。我们的代码和预先训练的型号将被释放。
translated by 谷歌翻译
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
translated by 谷歌翻译
我们在这项研究中的目标是研究一个更现实的环境,在这种环境中,我们可以为细粒度的产品类别进行弱监督的多模式实例级产品检索。我们首先贡献了product1m数据集,并定义了两个实际实例级检索任务,以实现价格比较和个性化建议的评估。对于两个实例级任务,如何准确地指出视觉语言数据中提到的产品目标并有效地降低了无关紧要的内容的影响非常具有挑战性。为了解决这个问题,我们利用训练一个更有效的跨模式与模型,该模型能够自适应地能够通过使用一个实体图,其节点和边缘分别表示实体和相似性,从而可以从多模式数据中合并来自多模式数据的关键概念信息。实体。具体而言,为实例级别的商品检索提出了一种新型的实体图增强的跨模式预处理(EGE-CMP)模型,该模型明确地将基于节点的基于节点的基于节点和子图的方式显式地注入实体知识。自我监管的混合流变压器可以减少不同对象内容之间的混淆,从而有效地指导网络专注于具有真实语义的实体。实验结果很好地验证了我们的EGE-CMP的功效和概括性,表现优于几个SOTA跨模式基线,例如夹子,Uniter和Capture。
translated by 谷歌翻译
We present a simple yet effective end-to-end Video-language Pre-training (VidLP) framework, Masked Contrastive Video-language Pretraining (MAC), for video-text retrieval tasks. Our MAC aims to reduce video representation's spatial and temporal redundancy in the VidLP model by a mask sampling mechanism to improve pre-training efficiency. Comparing conventional temporal sparse sampling, we propose to randomly mask a high ratio of spatial regions and only feed visible regions into the encoder as sparse spatial sampling. Similarly, we adopt the mask sampling technique for text inputs for consistency. Instead of blindly applying the mask-then-prediction paradigm from MAE, we propose a masked-then-alignment paradigm for efficient video-text alignment. The motivation is that video-text retrieval tasks rely on high-level alignment rather than low-level reconstruction, and multimodal alignment with masked modeling encourages the model to learn a robust and general multimodal representation from incomplete and unstable inputs. Coupling these designs enables efficient end-to-end pre-training: reduce FLOPs (60% off), accelerate pre-training (by 3x), and improve performance. Our MAC achieves state-of-the-art results on various video-text retrieval datasets, including MSR-VTT, DiDeMo, and ActivityNet. Our approach is omnivorous to input modalities. With minimal modifications, we achieve competitive results on image-text retrieval tasks.
translated by 谷歌翻译
通过网络视频的快速增长,视频语言建模引起了很多关注。大多数现有方法都假定视频帧和文本描述是语义上关联的,并专注于视频级别的视频模型。但是,该假设通常是有两个原因的:(1)凭借视频内容丰富的语义,很难用单个视频级别的描述覆盖所有帧; (2)原始视频通常具有嘈杂/毫无意义的信息(例如,镜头,过渡或预告片)。尽管最近的许多作品部署了注意力来减轻此问题,但无关/嘈杂的信息仍然使得很难解决。为了克服此类挑战,我们提出了一个高效有效的模型,称为语言引导网络(LGDN),用于视频语言建模。与使用所有提取的视频帧的大多数现有方法不同,LGDN在语言监督下动态过滤了未对准或冗余的帧,并且每个视频仅获得2---4个显着帧,以进行交叉模式令牌级别的对准。在五个公共数据集上进行的广泛实验表明,我们的LGDN优于最先进的利润率。我们还提供了详细的消融研究,以揭示解决噪声问题的关键重要性,以启发未来的视频语言工作。
translated by 谷歌翻译
最近,通过引入大规模的数据集和强大的变压器网络,视频预培训表明尤其是检索的巨大成功。然而,现有的视频语言变压器模型没有明确细粒度的语义对齐。在这项工作中,我们呈现了对象感知的变换器,以对象为中心的方法,该对象方法扩展了视频语言变压器来合并对象表示。关键的想法是利用边界框和对象标签来指导培训过程。我们在四个广泛使用的基准测试中评估了我们的三个标准子任务的模型。我们还提供了深入的分析和详细消融关于所提出的方法。我们在考虑的所有任务和数据集中表现出清晰的性能,展示将对象表示的模型中的型号集成到视频架构中。代码将以\ URL {https://github.com/fingerrec/oa -transformer}释放。
translated by 谷歌翻译
以前的视觉语言预训练模型主要构建具有令牌和对象(像素)的多模式输入,然后在它们之间执行交叉模式相互作用。我们认为,只有令牌和对象的输入限制了诸如短语到区域接地之类的高级语义对齐。同时,多层次对齐本质上是一致的,并且能够协同促进表示形式学习。因此,在本文中,我们建议学习视觉预训练(MVPTR)的多级语义一致性。在MVPTR中,我们遵循两种方式的嵌套结构,以引入概念为高级语义。为了简化从多模式多级输入的学习,我们的框架分为两个阶段,第一阶段着重于模式内多级表示学习,第二阶段通过粗粒和细粒度跨模态强化了跨模式的交互语义对齐任务。除了常用的图像文本匹配和掩盖语言模型任务外,我们还引入了第一阶段蒙版概念恢复任务以增强概念表示学习,第二阶段的另外两个任务在第二阶段中,以明确鼓励跨跨层次的多层次对准方式。我们的代码可在https://github.com/junction4nako/mvp_pytorch上找到。
translated by 谷歌翻译
BERT型结构导致了视觉语言预培训的革命,并在众多视觉语言下游任务上实现最先进的结果。现有解决方案主要用掩码令牌的多模态输入大小化,以触发基于掩码的代理预训练任务(例如,屏蔽语言建模和屏蔽对象/帧预测)。在这项工作中,我们认为这种掩码的输入将不可避免地引入跨模型匹配代理任务的噪声,从而留下探索的固有视觉语言协会。作为替代方案,我们推导出一种特定形式的用于视频预培训的跨模型代理目标,即对比跨模型匹配和去噪(Coco)。通过将蒙版帧/单词序列视为主要取消屏蔽的噪声增强,通过同时追求掩蔽和未掩蔽输入之间的模态匹配和模态匹配和模态的帧间匹配和模态的帧内偏离,通过对比方式来加强视频协会。我们的CoCo代理目标可以进一步集成到用于视频预训练的任何BERT型编码器解码器结构中,被命名为对比跨模态伯特(Coco-Bert)。我们在电视数据集上预先火车Coco-Bert以及新收集的大型GIF视频数据集(动作)。通过广泛的下游任务(例如,跨模型检索,视频问题回答和视频标题)进行广泛的实验,我们证明了Coco-Bert作为预训练的结构的优越性。
translated by 谷歌翻译
The booming development and huge market of micro-videos bring new e-commerce channels for merchants. Currently, more micro-video publishers prefer to embed relevant ads into their micro-videos, which not only provides them with business income but helps the audiences to discover their interesting products. However, due to the micro-video recording by unprofessional equipment, involving various topics and including multiple modalities, it is challenging to locate the products related to micro-videos efficiently, appropriately, and accurately. We formulate the microvideo-product retrieval task, which is the first attempt to explore the retrieval between the multi-modal and multi-modal instances. A novel approach named Multi-Queue Momentum Contrast (MQMC) network is proposed for bidirectional retrieval, consisting of the uni-modal feature and multi-modal instance representation learning. Moreover, a discriminative selection strategy with a multi-queue is used to distinguish the importance of different negatives based on their categories. We collect two large-scale microvideo-product datasets (MVS and MVS-large) for evaluation and manually construct the hierarchical category ontology, which covers sundry products in daily life. Extensive experiments show that MQMC outperforms the state-of-the-art baselines. Our replication package (including code, dataset, etc.) is publicly available at https://github.com/duyali2000/MQMC.
translated by 谷歌翻译
我们研究了联合视频和语言(VL)预培训,以实现跨模型学习和益处丰富的下游VL任务。现有的作品要么提取低质量的视频特征或学习有限的文本嵌入,但忽略了高分辨率视频和多样化的语义可以显着提高跨模型学习。在本文中,我们提出了一种新的高分辨率和多样化的视频 - 语言预训练模型(HD-VILA),用于许多可视任务。特别是,我们收集具有两个不同属性的大型数据集:1)第一个高分辨率数据集包括371.5k小时的720p视频,2)最多样化的数据集涵盖15个流行的YouTube类别。为了启用VL预培训,我们通过学习丰富的时空特征的混合变压器联合优化HD-VILA模型,以及多峰变压器,用于强制学习视频功能与多样化文本的交互。我们的预训练模式实现了新的最先进的导致10 VL了解任务和2个新颖的文本到视觉生成任务。例如,我们以零拍摄MSR-VTT文本到视频检索任务的相对增加38.5%R @ 1的相对增长,高分辨率数据集LSMDC为53.6%。学习的VL嵌入也有效地在文本到视觉操纵和超分辨率任务中产生视觉上令人愉悦和语义相关结果。
translated by 谷歌翻译
视频语言(VIDL)建模的巨大挑战在于从图像/视频理解模型和下游Vidl数据中提取的固定视频表示之间的断开。最近的研究试图通过端到端培训来减轻这种断开连接。为了使其进行计算可行,先前的作品倾向于“想象”视频输入,即,将一些稀疏的采样帧馈送到2D CNN中,然后是简单的均值汇集或连接以获得整体视频表示。虽然实现了有希望的结果,但这种简单的方法可能会失去对于执行下游VIDL任务至关重要的时间信息。在这项工作中,我们呈现紫罗兰色,全新的视频语言变压器,采用视频变压器,明确地模拟视频输入的时间动态。此外,与以前的研究不同,发现视频输入上的预训练任务(例如,屏蔽帧建模)不是非常有效的,我们设计了一个新的预训练任务,屏蔽了视觉令牌建模(MVM),以获得更好的视频建模。具体地,原始视频帧修补程序将“令牌化”转换为离散的视觉令牌,目标是基于蒙面的贴片恢复原始的视觉令牌。综合分析展示了通过视频变压器和MVM显式时间建模的有效性。因此,紫罗兰在5个视频问题的回答任务和4个文本到视频检索任务中实现了新的最先进的性能。
translated by 谷歌翻译
大规模数据集上的视觉语言预训练(VLP)在各种下游任务上表现出了首要性能。对于VLP来说,完整且公平的基准(即包括大规模的预训练数据集和各种下游任务)是必不可少的。尽管有很多具有英语语料库的基准,但使用其他语言(例如中文)为VLP建立丰富的基准是一个关键问题。为此,我们为研究界建立了一个称为零的中国跨模式基准,以比较VLP模型。我们发布两个用于下游任务的预训练数据集和五个微调数据集。旁边,我们提出了一个新的预训练前训练框架,用于跨模式学习。具体而言,我们应用全局对比度预级分别学习图像和文本的各个表示。然后,我们通过图像文本交叉编码器和文本图像交叉编码器以细粒度的排名方式融合表示形式。为了进一步增强模型的能力,我们提出了一种由目标引导的蒸馏和特征引导的蒸馏组成的双向蒸馏策略。对于简洁起见,我们将型号r2d2命名。我们在四个公共跨模式数据集和拟议的五个下游数据集上实现最先进的性能。在Flickr30k-CN,可可-CN和Muge进行零射击任务时,与最平均召回的R2D2进行了2.5亿个数据集的R2D2,在2.5亿个数据集中进行了4.7%,5.4%和6.3%的均值改善,而与最新的召回相比艺术。数据集,模型和代码可在https://github.com/yuxie11/r2d2上找到
translated by 谷歌翻译
现代视频文本检索框架基本上由三个部分组成:视频编码器,文本编码器和相似性。随着Visual和Textual表示学习的成功,在视频文本检索领域也采用了基于变压器的编码器和融合方法。在本报告中,我们呈现Clip2TV,旨在探索关键元素在基于变压器的方法中。为实现这一目标,我们首先重新审视一些对多模态学习的工作,然后将一些技术介绍到视频文本检索中,最后通过不同配置的大量实验进行评估。值得注意的是,Clip2TV在MSR-VTT数据集上实现了52.9 @ R1,优先表现出先前的SOTA结果为4.1%。
translated by 谷歌翻译
最近,跨模式的预训练任务一直是一个热点,因为它在各种下文研究中广泛应用,包括检索,字幕,问题答案等。然而,退出的方法采用单媒体预训练模型来探索进行跨模式检索的联合视觉表示,这很容易遭受计算爆炸的影响。此外,尽管常规的双流结构非常有效,但它们仍然缺乏重要的跨模式相互作用,导致性能低。在这些挑战的激励下,我们提出了一个对比的跨模式知识共享预训练(Cookie),以掌握联合文本图像表示。从结构上讲,Cookie由于可接受的时间消耗而采用了传统的双流结构。为了克服上述双流结构的固有缺陷,我们精心设计了两个有效的模块。具体而言,第一个模块是一个体重共享的变压器,它构建在视觉和文本编码器的头上,旨在将语义对齐文本和图像对齐。该设计使视觉和文本路径集中在相同的语义上。另一个是三个专门设计的对比学习,旨在分享不同模型之间的知识。共享的跨模式知识大大发展了单峰表示的研究,从而促进了单模式检索任务。对多模式匹配研究的广泛实验结果,包括跨模式检索,文本匹配和图像检索揭示了我们的计算效率和我们预训练模型的统计指标的上级。
translated by 谷歌翻译
图像文本检索(ITR)在桥接视觉和舌形式方面具有挑战性。对比度学习已被大多数先前的艺术所采用。除了有限的负面图像文本对外,约束学习的能力受到手动加权负对以及对外部知识的不认识的限制。在本文中,我们提出了新型耦合多样性敏感的动量约束学习(编码器),以改善跨模式表示。首先,发明了一种新颖的多样性对比度学习(DCL)体系结构。我们引入了两种模式的动态词典,以扩大图像文本对的比例,并且通过自适应负面对加权实现多样性敏感性。此外,编码器设计了两个分支。一个人从图像/文本中学习实例级的嵌入式,它还基于其嵌入为其输入图像/文本生成伪在线聚类标签。同时,另一个分支学会从常识知识图中查询以形成两种模式的概念级描述符。之后,两个分支都利用DCL来对齐跨模式嵌入空间,而额外的伪聚类标签预测损失则用于促进第二个分支的概念级表示学习。在两个流行的基准测试(即Mscoco和Flicker30k)上进行的广泛实验,验证编码器的表现明显优于最先进的方法。
translated by 谷歌翻译
事实证明,大规模的视觉和语言(V+L)预训练已被证明有效地增强了下游V+L任务。但是,当涉及时尚域时,现有的V+L方法是不足的,因为它们忽略了时尚V+L数据和下游任务的独特特征。在这项工作中,我们提出了一个以时尚为中心的新型V+L表示框架,被称为Fashionvil。它包含两个新型时尚特定的预训练任务,旨在使用时尚V+L数据利用两个内在属性。首先,与其他域仅包含单个图像文本对的其他域相比,时尚域中可能有多个图像。因此,我们提出了一项多视图对比学习任务,以将一个图像的可视化表示为另一个图像+文本的组成多模式表示。其次,时尚文本(例如,产品描述)通常包含丰富的细粒概念(属性/名词短语)。为了利用这一点,引入了伪归因于分类任务,以鼓励同一概念的学习的单峰(视觉/文本)表示。此外,时尚V+L任务唯一包含不符合常见的一流或两流体系结构的任务(例如,文本引导的图像检索)。因此,我们提出了一个灵活的,多功能的V+L模型体系结构,该体系结构由模态 - 静态变压器组成,以便可以灵活地适应任何下游任务。广泛的实验表明,我们的FashionVil在五个下游任务中实现了新的最新技术。代码可从https://github.com/brandonhanx/mmf获得。
translated by 谷歌翻译
现有视觉语言预训练(VLP)方法主要依赖于配对的图像文本数据集,这些数据集由大量人类劳动注释,或者从互联网上爬行,然后是精心制作的数据清洁技术。为了减少对良好的图像文本对的依赖,有望直接利用仅大规模的仅文本和仅图像的语料库。本文提出了一种数据增强方法,即跨模式cutmix(CMC),用于在未配对的VLP中进行隐式跨模式对齐学习。具体而言,CMC将自然句子从文本视图转换为多模式视图,在该视图中,句子中的视觉词语单词被带有相似语义的各种图像贴片随机替换。拟议中的CMC有几个吸引人的礼节。首先,它增强了数据多样性,同时保持语义含义完好无损地解决了对齐数据稀缺的问题;其次,通过将跨模式噪声连接到单模式数据上,它指导模型以学习跨模态的令牌级相互作用,以更好地降级。此外,我们提出了一种名为VLMIXER的新的未配对VLP方法,该方法将CMC与对比度学习集成在一起,以将Uni-Mododal和多模式视图汇总在一起,以在不同模式之间进行更好的实例级别对齐。在五个下游任务上进行的广泛实验表明,VLMIXER可以超过以前最先进的未配对VLP方法。
translated by 谷歌翻译
视频文本检索一直是多模式研究中的至关重要和基本任务。大型多模式对比预训练的发展,视频文本检索的开发已大大促进,这主要侧重于粗粒或细粒对比。然而,在先前的研究中很少探索过跨粒度的对比,这是粗粒表示和细粒度表示之间的对比。与细粒度或粗粒的对比相比,交叉粒度对比度计算了粗粒粒度特征与每个细粒特征之间的相关性,并且能够过滤出不必要的细颗粒特征,这些特征由粗粒度的特征引导相似性计算,从而提高了检索的准确性。为此,本文提出了一种新型的多透明对比模型,即X-CLIP,用于视频文本检索。但是,另一个挑战在于相似性聚集问题,该问题旨在将细粒度和跨粒度相似性矩阵与实例级别的相似性汇总。为了应对这一挑战,我们提出了对相似性矩阵(AOSM)模块的关注,以使模型重点放在基本帧和单词之间的对比度上,从而降低了不必要的帧和单词对检索结果的影响。 X-CLIP具有多透明的对比度和提议的AOSM模块,在五个广泛使用的视频文本检索数据集上取得了出色的性能,包括MSR-VTT(49.3 R@1),MSVD(50.4 R@1),LSMDC(26.11)(26.1 r@1),didemo(47.8 r@1)和ActivityNet(46.2 r@1)。它的表现优于先前的最先前, +6.3%, +6.6%, +11.1%, +6.7%, +3.8%的相对改善对这些基准测试,这表明了多透明的对比度和AOSM的优势。
translated by 谷歌翻译