The success of the large neural language models on many NLP tasks is exciting. However, we find that these successes sometimes lead to hype in which these models are being described as "understanding" language or capturing "meaning". In this position paper, we argue that a system trained only on form has a priori no way to learn meaning. In keeping with the ACL 2020 theme of "Taking Stock of Where We've Been and Where We're Going", we argue that a clear understanding of the distinction between form and meaning will help guide the field towards better science around natural language understanding.
translated by 谷歌翻译
最近围绕语言处理模型的复杂性的最新炒作使人们对机器获得了类似人类自然语言的指挥的乐观情绪。人工智能中自然语言理解的领域声称在这一领域取得了长足的进步,但是,在这方面和其他学科中使用“理解”的概念性清晰,使我们很难辨别我们实际上有多近的距离。目前的方法和剩余挑战的全面,跨学科的概述尚待进行。除了语言知识之外,这还需要考虑我们特定于物种的能力,以对,记忆,标签和传达我们(足够相似的)体现和位置经验。此外,测量实际约束需要严格分析当前模型的技术能力,以及对理论可能性和局限性的更深入的哲学反思。在本文中,我将所有这些观点(哲学,认知语言和技术)团结在一起,以揭开达到真实(人类般的)语言理解所涉及的挑战。通过解开当前方法固有的理论假设,我希望说明我们距离实现这一目标的实际程度,如果确实是目标。
translated by 谷歌翻译
自然语言处理的机器学习快速进步有可能改变有关人类学习语言的辩论。但是,当前人工学习者和人类的学习环境和偏见以削弱从学习模拟获得的证据的影响的方式分歧。例如,当今最有效的神经语言模型接受了典型儿童可用的语言数据量的大约一千倍。为了增加计算模型的可学习性结果的相关性,我们需要培训模型学习者,而没有比人类具有显着优势的学习者。如果合适的模型成功地获得了一些目标语言知识,则可以提供一个概念证明,即在假设的人类学习方案中可以学习目标。合理的模型学习者将使我们能够进行实验操作,以对学习环境中的变量进行因果推断,并严格测试史密斯风格的贫困声明,主张根据人类对人类的先天语言知识,基于有关可学习性的猜测。由于实用和道德的考虑因素,人类受试者将永远无法实现可比的实验,从而使模型学习者成为必不可少的资源。到目前为止,试图剥夺当前模型的不公平优势,为关键语法行为(例如可接受性判断)获得亚人类结果。但是,在我们可以合理地得出结论,语言学习需要比当前模型拥有更多的特定领域知识,我们必须首先以多模式刺激和多代理互动的形式探索非语言意见,以使学习者更有效地学习学习者来自有限的语言输入。
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
自然语言处理(NLP)已成为当前人工智能繁荣中的主要应用领域之一。转移学习已经启用了大量深入学习的神经网络,接受了语言建模任务,以大大提高了所有语言任务的性能。有趣的是,当模型培训使用包含软件代码的数据培训时,它们在从自然语言规范中生成功能计算机代码时展示了显着的能力。我们认为这是一种难题,用于神经模型为生成词组结构语法提供了一种替代理论,以说明语言有效。由于编程语言的语法由短语结构语法决定,因此成功的神经模型显然是对编程语言的理论基础的理论基础,以及通过扩展,自然语言来实现。我们认为语言模型的术语模型是误导性的,因为深度学习模型不是语言的理论模型,并提出采用语料库模型,这更好地反映了模型的成因和内容。
translated by 谷歌翻译
大规模的语言技术越来越多地用于与人类在不同情况下的各种形式的交流中。这些技术的一种特殊用例是对话剂,它会根据提示和查询输出自然语言文本。这种参与方式提出了许多社会和道德问题。例如,将对话剂与人类规范或价值观相结合意味着什么?它们应该与哪些规范或价值观保持一致?如何实现这一目标?在本文中,我们提出了许多步骤来帮助回答这些问题。我们首先要对对话代理人和人类对话者之间语言交流的基础进行哲学分析。然后,我们使用此分析来识别和制定理想的对话规范,这些规范可以控制人类与对话代理之间的成功语言交流。此外,我们探讨了如何使用这些规范来使对话剂与在一系列不同的话语领域中的人类价值相结合。最后,我们讨论了我们对与这些规范和价值观一致的对话代理设计的建议的实际含义。
translated by 谷歌翻译
Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere.
translated by 谷歌翻译
基于变压器的语言模型最近在许多自然语言任务中取得了显着的结果。但是,通常通过利用大量培训数据来实现排行榜的性能,并且很少通过将明确的语言知识编码为神经模型。这使许多人质疑语言学对现代自然语言处理的相关性。在本文中,我介绍了几个案例研究,以说明理论语言学和神经语言模型仍然相互关联。首先,语言模型通过提供一个客观的工具来测量语义距离,这对语言学家很有用,语义距离很难使用传统方法。另一方面,语言理论通过提供框架和数据源来探究我们的语言模型,以了解语言理解的特定方面,从而有助于语言建模研究。本论文贡献了三项研究,探讨了语言模型中语法 - 听觉界面的不同方面。在论文的第一部分中,我将语言模型应用于单词类灵活性的问题。我将Mbert作为语义距离测量的来源,我提供了有利于将单词类灵活性分析为方向过程的证据。在论文的第二部分中,我提出了一种方法来测量语言模型中间层的惊奇方法。我的实验表明,包含形态句法异常的句子触发了语言模型早期的惊喜,而不是语义和常识异常。最后,在论文的第三部分中,我适应了一些心理语言学研究,以表明语言模型包含了论证结构结构的知识。总而言之,我的论文在自然语言处理,语言理论和心理语言学之间建立了新的联系,以为语言模型的解释提供新的观点。
translated by 谷歌翻译
当前的语言模型可以产生高质量的文本。他们只是复制他们之前看到的文本,或者他们学习了普遍的语言抽象吗?要取笑这些可能性,我们介绍了乌鸦,这是一套评估生成文本的新颖性,专注于顺序结构(n-gram)和句法结构。我们将这些分析应用于四种神经语言模型(LSTM,变压器,变换器-XL和GPT-2)。对于本地结构 - 例如,单个依赖性 - 模型生成的文本比来自每个模型的测试集的人类生成文本的基线显着不那么新颖。对于大规模结构 - 例如,总句结构 - 模型生成的文本与人生成的基线一样新颖甚至更新颖,但模型仍然有时复制,在某些情况下,在训练集中重复超过1000字超过1,000字的通道。我们还表现了广泛的手动分析,表明GPT-2的新文本通常在形态学和语法中形成良好,但具有合理的语义问题(例如,是自相矛盾)。
translated by 谷歌翻译
Pragmatics is an essential part of communication, but it remains unclear what mechanisms underlie human pragmatic communication and whether NLP systems capture pragmatic language understanding. To investigate both these questions, we perform a fine-grained comparison of language models and humans on seven pragmatic phenomena, using zero-shot prompting on an expert-curated set of English materials. We ask whether models (1) select pragmatic interpretations of speaker utterances, (2) make similar error patterns as humans, and (3) use similar linguistic cues as humans to solve the tasks. We find that the largest models achieve high accuracy and match human error patterns: within incorrect responses, models favor the literal interpretation of an utterance over heuristic-based distractors. We also find evidence that models and humans are sensitive to similar linguistic cues. Our results suggest that even paradigmatic pragmatic phenomena may be solved without explicit representations of other agents' mental states, and that artificial models can be used to gain mechanistic insights into human pragmatic processing.
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
大型语言模型(LLMS)具有变革性。它们是预先训练的基础模型,可以通过微调来适应许多不同的自然语言任务,以前每个任务都需要单独的网络模型。这是接近人类语言的非凡多功能性的一步。 GPT-3和最近的LAMDA可以与人类进行对话,并在最少的启动之后与许多例子进行许多主题。但是,关于这些LLM是否了解他们在说什么或表现出智力迹象的反应。在与LLM的三次访谈中得出截然不同的结论中,这种较高的差异显示出来。发现了一种新的可能性,可以解释这种分歧。实际上,LLM中似乎是智慧的是反映面试官智力的镜子,这是一个显着的转折,可以被视为反向图灵测试。如果是这样,那么通过研究访谈,我们可能会更多地了解面试官的智力和信念,而不是LLM的智能。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
主张神经符号人工智能(NESY)断言,将深度学习与象征性推理相结合将导致AI更强大,而不是本身。像深度学习一样成功,人们普遍认为,即使我们最好的深度学习系统也不是很擅长抽象推理。而且,由于推理与语言密不可分,因此具有直觉的意义,即自然语言处理(NLP)将成为NESY特别适合的候选人。我们对实施NLP实施NESY的研究进行了结构化审查,目的是回答Nesy是否确实符合其承诺的问题:推理,分布概括,解释性,学习和从小数据的可转让性以及新的推理到新的域。我们研究了知识表示的影响,例如规则和语义网络,语言结构和关系结构,以及隐式或明确的推理是否有助于更高的承诺分数。我们发现,将逻辑编译到神经网络中的系统会导致满足最NESY的目标,而其他因素(例如知识表示或神经体系结构的类型)与实现目标没有明显的相关性。我们发现在推理的定义方式上,特别是与人类级别的推理有关的许多差异,这会影响有关模型架构的决策并推动结论,这些结论在整个研究中并不总是一致的。因此,我们倡导采取更加有条不紊的方法来应用人类推理的理论以及适当的基准的发展,我们希望这可以更好地理解该领域的进步。我们在GitHub上提供数据和代码以进行进一步分析。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
在本文中,我们将我们的理解,以经典的AI难题的问题应用于激进的旨在的议程。自然语言理解是AI研究的子领域,看起来很容易对先驱者来说。因此,在其原始形式的情况下,将计算机假设计算机可以使用语言,挑战是假装人类智慧。事实证明,与必要的语言技能相比,下棋和正式逻辑很容易。良好的老式的AI(戈福)的技术假设符号表示是推理和人类通信的核心,包括将代表从一个思想转移到另一个思想。但是,通过这个模型,一个人发现表示在另一个人的思想中,而不出现在中间语言。人们通过思想沟通似乎似乎。具有语音接口的系统,如Alexa和Siri当然是常见的,但它们是有限的。我们而不是添加思维阅读技巧,我们介绍了一个“作弊”,使我们的系统能够假装它。作弊很简单,对计算机科学家而言只是略有兴趣,并且对哲学家来说并不有趣。然而,阅读关于审查的主题,我们“直接感知”他人的意图,我们的作弊占据了一个新的光明,本文再次看自然语言理解在人类之间的实际工作程度。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
Language models (LMs) are trained on collections of documents, written by individual human agents to achieve specific goals in an outside world. During training, LMs have access only to text of these documents, with no direct evidence of the internal states of the agents that produced them -- a fact often used to argue that LMs are incapable of modeling goal-directed aspects of human language production and comprehension. Can LMs trained on text learn anything at all about the relationship between language and use? I argue that LMs are models of intentional communication in a specific, narrow sense. When performing next word prediction given a textual context, an LM can infer and represent properties of an agent likely to have produced that context. These representations can in turn influence subsequent LM generation in the same way that agents' communicative intentions influence their language. I survey findings from the recent literature showing that -- even in today's non-robust and error-prone models -- LMs infer and use representations of fine-grained communicative intentions and more abstract beliefs and goals. Despite the limited nature of their training data, they can thus serve as building blocks for systems that communicate and act intentionally.
translated by 谷歌翻译