代码生成是一个长期的挑战,旨在根据自然语言描述生成代码段。通常,昂贵的文本编码配对数据对于培训代码生成模型至关重要。最近,由于培训预培训技术的成功,大型语言模型接受了大规模未标记的代码语料库的培训,并在代码生成方面表现良好。在本文中,我们调查了如何利用未标记的代码语料库来训练以图书馆为导向的代码生成的模型。由于对于程序员重复使用第三方库是一种普遍的做法,因此由于库数量大量,文本编码配对数据很难获得。我们观察到面向图书馆的代码片段更有可能共享类似的代码草图。因此,我们为证书提供了两个步骤:草图器生成草图,然后发电机填充了草图中的详细信息。 Sketcher和Generator都使用未标记的数据在基本模型上不断预先训练。此外,我们制作了两个名为Pandaseval和NumpyeVal的基准,以评估面向图书馆的代码生成。实验结果证明了CERT的表现令人印象深刻。例如,它超过了基本模型,在pandaseval上的Pass@1方面,绝对提高了15.67%。我们的工作可在https://github.com/microsoft/pycodegpt上获得。
translated by 谷歌翻译
给定编程问题,预训练的语言模型(例如Codex)证明了通过采样生成多个不同代码解决方案的能力。但是,从这些样本中选择正确或最佳解决方案仍然是一个挑战。尽管验证代码解决方案正确性的一种简单方法是通过执行测试用例,但生产高质量的测试用例非常昂贵。在本文中,我们探讨了使用预训练的语言模型自动生成测试用例,称我们的方法Codet:使用生成测试的代码生成。 CODET使用生成的测试用例执行代码解决方案,然后根据与生成的测试用例和其他生成的解决方案的双重执行协议选择最佳解决方案。我们在五个具有HumaneVal和MBPP基准的不同预训练模型上评估Codet。广泛的实验结果表明,Codet可以实现对以前方法的显着,一致且令人惊讶的改进。例如,CODET将HOMANEVAL的通行证提高到65.8%,在Code-Davinci-002模型上的绝对增长率为18.8%,并且比以前的最新结果相比,绝对20+%提高。
translated by 谷歌翻译
Given a natural language that describes the user's demands, the NL2Code task aims to generate code that addresses the demands. This is a critical but challenging task that mirrors the capabilities of AI-powered programming. The NL2Code task is inherently versatile, diverse and complex. For example, a demand can be described in different languages, in different formats, and at different levels of granularity. This inspired us to do this survey for NL2Code. In this survey, we focus on how does neural network (NN) solves NL2Code. We first propose a comprehensive framework, which is able to cover all studies in this field. Then, we in-depth parse the existing studies into this framework. We create an online website to record the parsing results, which tracks existing and recent NL2Code progress. In addition, we summarize the current challenges of NL2Code as well as its future directions. We hope that this survey can foster the evolution of this field.
translated by 谷歌翻译
Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions.
translated by 谷歌翻译
我们提出了Pangu-Coder,这是一种仅预读的解码器语言模型,该模型采用pangu-alpha架构进行文本到代码生成,即给定自然语言问题描述的编程语言解决方案的合成。我们使用两阶段策略训练Pangu-Coder:第一阶段采用因果语言建模(CLM)来预先培训原始编程语言数据,而第二阶段则使用因果语言建模和掩盖语言建模(MLM)的组合培训目标,专注于文本到代码生成的下游任务,并培训松散的自然语言程序定义和代码功能。最后,我们讨论了pangu-coder-ft,该pander the是通过竞争性编程问题和代码与持续集成测试的结合进行了微调的。我们评估了pangu-coder,重点是它是否生成功能上正确的程序,并证明它在参加较小的上下文窗口和较少的数据培训的同时,它比诸如Codex之类的类似大小的模型(例如Codex)实现等效性或更好的性能。
translated by 谷歌翻译
这项工作表明了如何以编程难题的形式使用大规模语言模型(LMS)与经过验证的解决方案合成编程问题,然后可以将其用于微调相同的模型,从而提高其性能。这项工作以最近的两项发展为基础。首先,LMS在非平凡的推理和算法实施中取得了突破,生成可以解决某些中级竞争性编程问题的代码。但是,培训代码LMS涉及策划的一组自然语言问题描述以及源代码测试和解决方案,这些测试和解决方案的大小有限。其次,引入了一种新的编程挑战格式,称为编程难题,该格式不需要自然语言描述,并通过源代码测试直接指定。在这项工作中,我们展示了如何使用Python解释器验证的合成编程难题和解决方案,可用于改善从P3求解测试难题的性能,P3是一套Python公共基准的Python编程难题。此外,我们发布了由Codex模型生成的100万个难题和解决方案的数据集,我们证明可以通过微调改善较小的模型。
translated by 谷歌翻译
Code completion aims to help improve developers' productivity by suggesting the next code tokens from a given context. Various approaches have been proposed to incorporate abstract syntax tree (AST) information for model training, ensuring that code completion is aware of the syntax of the programming languages. However, existing syntax-aware code completion approaches are not on-the-fly, as we found that for every two-thirds of characters that developers type, AST fails to be extracted because it requires the syntactically correct source code, limiting its practicality in real-world scenarios. On the other hand, existing on-the-fly code completion does not consider syntactic information yet. In this paper, we propose PyCoder to leverage token types, a kind of lightweight syntactic information, which is readily available and aligns with the natural order of source code. Our PyCoder is trained in a multi-task training manner so that by learning the supporting task of predicting token types during the training phase, the models achieve better performance on predicting tokens and lines of code without the need for token types in the inference phase. Comprehensive experiments show that PyCoder achieves the first rank on the CodeXGLUE leaderboard with an accuracy of 77.12% for the token-level predictions, which is 0.43%-24.25% more accurate than baselines. In addition, PyCoder achieves an exact match of 43.37% for the line-level predictions, which is 3.63%-84.73% more accurate than baselines. These results lead us to conclude that token type information (an alternative to syntactic information) that is rarely used in the past can greatly improve the performance of code completion approaches, without requiring the syntactically correct source code like AST-based approaches do. Our PyCoder is publicly available on HuggingFace.
translated by 谷歌翻译
评论是源代码的重要组成部分,是文档的主要来源。这引起了人们对使用大量注释的兴趣训练或评估消耗或生产它们的工具,例如生成甲骨文,甚至是从注释中生成代码,或自动生成代码摘要。这项工作大部分对评论的结构和质量做出了强烈的假设,例如假设它们主要由适当的英语句子组成。但是,我们对这些用例的现有评论的实际质量知之甚少。评论通常包含在其他类型的文本中看不到的独特结构和元素,并且从中过滤或提取信息需要额外的谨慎。本文探讨了来自GitHub的840个最受欢迎的开源项目和Srilab数据集的8422个项目的Python评论的内容和质量,并且Na \“ Ive vs.深入过滤的影响都可以使用现有注释来用于使用现有注释。培训和评估产生评论的系统。
translated by 谷歌翻译
天然语言对代码模型学会生成具有自然语言(NL)意图的代码段。但是,由于每天引入新的库和功能,因此不可能使用培训示例来覆盖所有API的公开库和专有库和功能的快速增长。因此,现有模型本质上不能仅通过将它们纳入培训数据而概括地使用看不见的功能和库。相反,当人类程序员编写程序时,他们经常指文本资源,例如代码手册,文档和教程,以探索和理解可用的库功能。受此观察的启发,我们介绍了Doccoder:一种方法,该方法通过(1)检索给定NL意图的相关文档明确利用代码手册和文档,以及(2)基于NL意图和检索到的文档生成代码。我们的方法是一般的,可以应用于任何编程语言,并且对基础神经模型不可知。我们证明,Doccoder始终改善NL-TO-代码模型:DOCCODER在新的Bash数据集TLDR上的强基准比强基础高11倍;在受欢迎的Python Conala基准中,Doccoder在强大的基线上提高了1.65 BLEU。
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
In software development, it is common for programmers to copy-paste or port code snippets and then adapt them to their use case. This scenario motivates the code adaptation task -- a variant of program repair which aims to adapt variable identifiers in a pasted snippet of code to the surrounding, preexisting source code. However, no existing approach has been shown to effectively address this task. In this paper, we introduce AdaptivePaste, a learning-based approach to source code adaptation, based on transformers and a dedicated dataflow-aware deobfuscation pre-training task to learn meaningful representations of variable usage patterns. We evaluate AdaptivePaste on a dataset of code snippets in Python. Results suggest that our model can learn to adapt source code with 79.8% accuracy. To evaluate how valuable is AdaptivePaste in practice, we perform a user study with 10 Python developers on a hundred real-world copy-paste instances. The results show that AdaptivePaste reduces the dwell time to nearly half the time it takes for manual code adaptation, and helps to avoid bugs. In addition, we utilize the participant feedback to identify potential avenues for improvement of AdaptivePaste.
translated by 谷歌翻译
大型语言模型已经证明了能够在自然语言和编程语言文本上进行条件和生成的能力。这样的模型打开了多语言代码生成的可能性:代码生成模型是否可以将知识从一种语言推广到另一种语言?尽管当代代码生成模型可以生成语义上正确的Python代码,但对它们使用其他语言的能力知之甚少。我们通过提出Multipl-E来促进该主题的探索,这是自然语言到代码生成的第一个多语言平行基准。 Multipl-E扩展了HumaneVal基准(Chen等,2021),以支持另外18种编程语言,涵盖了一系列编程范式和受欢迎程度。我们在Multipl-E:Codex和Incoder上评估了两个最先进的代码生成模型。我们发现,在几种语言上,法典匹配,甚至超过了其在Python上的性能。在多型E中表示的编程语言范围使我们能够探索语言频率和语言功能对模型性能的影响。最后,将代码生成基准分配给新编程语言的多重方法既可扩展又可扩展。我们描述了一种通用方法,可以轻松地增加对新基准和语言的支持。
translated by 谷歌翻译
样式是自然语言文本的重要组成部分,反映了文本语调的变化,同时保持基础信息相同。即使编程语言具有严格的语法规则,它们也具有风格。代码可以使用相同的功能编写,但使用不同的语言功能。但是,编程样式很难量化,因此,作为这项工作的一部分,我们定义了专门针对Python的样式属性。为了构建样式的定义,我们利用层次聚类来捕获样式定义,而无需指定转换。除了定义样式外,我们还探索了预训练的代码语言模型的功能,以捕获有关代码样式的信息。为此,我们微调了预训练的代码语言模型,并在代码样式转移任务中评估了其性能。
translated by 谷歌翻译
Machine Learning for Source Code (ML4Code) is an active research field in which extensive experimentation is needed to discover how to best use source code's richly structured information. With this in mind, we introduce JEMMA, an Extensible Java Dataset for ML4Code Applications, which is a large-scale, diverse, and high-quality dataset targeted at ML4Code. Our goal with JEMMA is to lower the barrier to entry in ML4Code by providing the building blocks to experiment with source code models and tasks. JEMMA comes with a considerable amount of pre-processed information such as metadata, representations (e.g., code tokens, ASTs, graphs), and several properties (e.g., metrics, static analysis results) for 50,000 Java projects from the 50KC dataset, with over 1.2 million classes and over 8 million methods. JEMMA is also extensible allowing users to add new properties and representations to the dataset, and evaluate tasks on them. Thus, JEMMA becomes a workbench that researchers can use to experiment with novel representations and tasks operating on source code. To demonstrate the utility of the dataset, we also report results from two empirical studies on our data, ultimately showing that significant work lies ahead in the design of context-aware source code models that can reason over a broader network of source code entities in a software project, the very task that JEMMA is designed to help with.
translated by 谷歌翻译
上下文:堆栈溢出对于寻求编程问题答案的软件开发人员非常有帮助。先前的研究表明,越来越多的问题质量低,因此从潜在的答案者那里获得了更少的关注。 Gao等。提出了一个基于LSTM的模型(即BilstM-CC),以自动从代码片段中生成问题标题,以提高问题质量。但是,只有在问题主体中使用代码段无法为标题生成提供足够的信息,而LSTMS无法捕获令牌之间的远程依赖性。目的:本文提出了基于深度学习的新型模型CCBERT,旨在通过充分利用整个问题主体的双模式信息来增强问题标题生成的性能。方法:CCBERT遵循编码器范式范式,并使用Codebert将问题主体编码为隐藏的表示形式,堆叠的变压器解码器以生成预测的代币,以及附加的复制注意层来完善输出分布。编码器和解码器都执行多头自我注意操作,以更好地捕获远程依赖性。本文构建了一个数据集,该数据集包含大约200,000个高质量问题,该数据从Stack Overflow正式发布的数据中滤除,以验证CCBERT模型的有效性。结果:CCBERT优于数据集上的所有基线模型。对仅代码和低资源数据集进行的实验表明,CCBERT的优势性能较小。人类评估还显示了CCBERT关于可读性和相关标准的出色表现。
translated by 谷歌翻译
机器学习的最新进展显着改善了对源代码数据的理解,并在许多下游任务上取得了良好的表现。像GitHub这样的开源存储库使用丰富的未标记代码数据启用此过程。但是,缺乏高质量标记的数据在很大程度上阻碍了几个相关任务的进度,例如程序翻译,摘要,合成和代码搜索。本文介绍了XLCOST,跨语言代码摘要数据集,这是一种用于跨语言代码智能的新基准数据集。我们的数据集包含来自8种语言(7种常用编程语言和英语)的细粒并行数据,并支持10个跨语性代码任务。据我们所知,就规模和语言数量而言,它是源代码的最大并行数据集。我们还为每个任务提供了几种最先进的基线模型的性能。我们认为,这个新数据集可能是研究界的宝贵资产,并促进了跨语法代码智能的新方法的开发和验证。
translated by 谷歌翻译
最近,神经技术已用于自动生成源代码。这些方法在有望获得声明语言的同时,在命令式语言的数据集上的性能差得多。由于通常将声明性语言嵌入了现实世界软件开发中的命令式语言(即Turducken式编程)中,因此声明语言的有希望的结果几乎不会导致手动软件开发工作大幅减少。在本文中,我们定义了一项新的代码生成任务:鉴于自然语言评论,此任务旨在用嵌入式声明语言以基本命令性语言生成程序。据我们所知,这是第一个Turducken风格的代码生成任务。对于此任务,我们将Lyra:Python中的数据集提出了嵌入式SQL。该数据集包含来自现实世界项目的2,000个精心注释的数据库操作程序。每个程序都与中文评论和英文评论配对。在我们的实验中,我们采用了变压器,伯特风格和GPT风格的模型作为基础。在最佳环境中,GPT风格模型的生成性能比其他模型更好,在使用中文和英语评论时,AST精确匹配的精度分别为24%和25.5%。因此,我们认为Lyra为代码生成提供了新的挑战。但是,克服这一挑战可能会大大提高代码生成技术在现实世界软件开发中的适用性。
translated by 谷歌翻译
源代码的预训练的生成语言模型(例如PLBART,CODET5,SPT-CODE)在过去几年中对多个任务(包括代码生成和翻译)产生了强劲的结果。这些模型采用了不同的训练前目标,以自我监督的方式从非常大规模的语料库中学习代码构建的统计数据。预训练模型的成功很大程度上取决于这些预训练的目标。本文提出了一个新的预训练目标,即“归化”源代码,利用代码的双峰,双通道(正式和自然渠道)性质。与自然语言不同,代码的双峰,双通道的性质使我们能够大规模生成语义上等效的代码。我们介绍了六类的语义保存转换,以引入非自然的代码形式,然后强迫我们的模型制作开发人员编写的更自然的原创程序。学习在没有明确的手动监督的情况下,通过大型的开源代码来生成等效但更自然的代码,有助于模型学习摄入和生成代码。我们将模型在三个生成软件工程任务中微调:代码生成,代码翻译和代码改进,具有有限的人类策划标记数据并实现最先进的性能与CODET5。我们表明,我们的预训练模型在零射门和少数学习方面特别有竞争力,并且在学习代码属性(例如语法,数据流)方面更好。
translated by 谷歌翻译
源代码存储库由大型代码库组成,通常包含容易发生的程序。软件的复杂性日益增加导致时间和识别这些缺陷的时间和成本急剧上升。存在各种方法可以自动生成错误代码的修复程序。但是,由于特定错误的可能解决方案的组合空间很大,因此没有很多工具和数据集可以有效地评估生成的代码。在这项工作中,我们介绍了FixeVal,这是一个基准,其中包括竞争性编程问题及其各自修复程序的基准。我们引入了丰富的测试套件,以评估和评估模型生成程序修复的正确性。我们将两种在编程语言上鉴定的变压器语言模型视为我们的基准,并使用基于匹配和基于执行的评估指标对其进行比较。我们的实验表明,基于匹配的指标不能准确反映模型生成的程序修复,而基于执行的方法通过专门为该解决方案设计的所有情况和场景评估程序。因此,我们认为FixeVal提供了朝着实际自动错误修复和模型生成的代码评估的步骤。
translated by 谷歌翻译
程序合成或代码生成旨在生成满足问题规范的程序。使用大规模预处理的语言模型(LMS)的最新方法显示出令人鼓舞的结果,但它们有一些关键的局限性。特别是,他们经常遵循标准监督的微调程序,仅从对自然语言问题描述和基础真相计划对培训代码生成模型。这种范式在很大程度上忽略了问题规范中的一些重要但潜在的信号,例如单位测试,因此在求解复杂的看不见的编码任务时通常会导致性能差。为了解决这些局限性,我们提出了“ Coderl”,这是通过验证的LMS和深入强化学习(RL)实现程序合成任务的新框架。具体而言,在培训期间,我们将代码生成的LM视为参与者网络,并引入批评网络,该网络经过培训,以预测生成的程序的功能正确性,并为演员提供密集的反馈信号。在推理期间,我们引入了一种新一代程序,具有关键的抽样策略,该过程允许模型根据示例单位测试和评论家分数的反馈自动重新生成程序。对于模型骨架,我们扩展了Codet5的编码器架构,具有增强的学习目标,更大的模型大小和更好的预处理数据。我们的方法不仅在具有挑战性的应用程序基准上实现了新的SOTA结果,而且还显示出强大的零弹性传输能力,并在简单的MBPP基准上具有新的SOTA结果。
translated by 谷歌翻译