假设源标签空间集成了目标一个,部分视频域适应(PVDA)是跨域视频分类问题的更一般和实际的场景。 PVDA的主要挑战是减轻由仅源离群类别类别引起的负转移。为了应对这一挑战,一个关键的步骤是通过提高目标类别和下降的异常值类来汇总目标预测,以分配类权重。但是,班级权重的错误预测会误导网络并导致负转移。以前的工作通过使用时间特征和注意力机制来提高类重量的准确性,但是当试图在域移动显着时,尝试产生准确的类重量时,这些方法可能会缺乏,就像在大多数真实世界中一样。为了应对这些挑战,我们提出了多模式集群校准的部分对抗网络(MCAN)。 MCAN通过多个时间尺度的多模式特征增强了视频功能提取,以形成更强大的整体特征。它利用一种新型的类重量校准方法来减轻由不正确的类重量引起的负转移。校准方法试图使用无监督聚类所隐含的分布信息来识别和权衡正确和错误的预测。与最先进的PVDA方法相比,对盛行的PVDA基准进行了广泛的实验,而拟议的MCAN取得了重大改进。
translated by 谷歌翻译
Domain adaptation (DA) approaches address domain shift and enable networks to be applied to different scenarios. Although various image DA approaches have been proposed in recent years, there is limited research towards video DA. This is partly due to the complexity in adapting the different modalities of features in videos, which includes the correlation features extracted as long-term dependencies of pixels across spatiotemporal dimensions. The correlation features are highly associated with action classes and proven their effectiveness in accurate video feature extraction through the supervised action recognition task. Yet correlation features of the same action would differ across domains due to domain shift. Therefore we propose a novel Adversarial Correlation Adaptation Network (ACAN) to align action videos by aligning pixel correlations. ACAN aims to minimize the distribution of correlation information, termed as Pixel Correlation Discrepancy (PCD). Additionally, video DA research is also limited by the lack of cross-domain video datasets with larger domain shifts. We, therefore, introduce a novel HMDB-ARID dataset with a larger domain shift caused by a larger statistical difference between domains. This dataset is built in an effort to leverage current datasets for dark video classification. Empirical results demonstrate the state-of-the-art performance of our proposed ACAN for both existing and the new video DA datasets.
translated by 谷歌翻译
基于视频的无监督域适应性(VUDA)方法改善了视频模型的鲁棒性,从而使它们能够应用于不同环境的动作识别任务。但是,这些方法需要在适应过程中不断访问源数据。然而,在许多现实世界中,源视频域中的主题和场景应该与目标视频域中的主题和场景无关。随着对数据隐私的越来越重视,需要源数据访问的方法会引起严重的隐私问题。因此,为应对这种关注,更实用的域适应情景被提出为基于无源的视频域的适应性(SFVDA)。尽管图像数据上有一些无源域适应性(SFDA)的方法,但由于视频的多模式性质,这些方法在SFVDA中产生了退化性能,并且存在其他时间特征。在本文中,我们提出了一个新颖的专注时间一致网络(ATCON)来通过学习时间一致性来解决SFVDA,并由两个新颖的一致性目标保证,即具有跨局部时间特征执行的特征一致性和源预测一致性。 ATCON通过基于预测置信度参与本地时间特征,进一步构建有效的总体特征。经验结果表明,ATCON在各种跨域动作识别基准中的最先进表现。
translated by 谷歌翻译
无监督的视频域适应是一项实用但具有挑战性的任务。在这项工作中,我们第一次从脱离视图中解决了它。我们的关键想法是在适应过程中将与域相关的信息从数据中删除。具体而言,我们考虑从两组潜在因素中生成跨域视频,一个编码静态域相关信息,另一个编码时间和语义相关的信息。然后开发转移顺序的VAE(Transvae)框架以建模这种产生。为了更好地适应适应,我们进一步提出了几个目标,以限制Transvae中的潜在因素。与几种最先进的方法相比,对UCF-HMDB,小丑和Epic-Kitchens数据集进行了广泛的实验验证了Transvae的有效性和优势。代码可在https://github.com/ldkong1205/transvae上公开获取。
translated by 谷歌翻译
尽管近年来行动认可取得了令人印象深刻的结果,但视频培训数据的收集和注释仍然很耗时和成本密集。因此,已经提出了图像到视频改编,以利用无标签的Web图像源来适应未标记的目标视频。这提出了两个主要挑战:(1)Web图像和视频帧之间的空间域移动; (2)图像和视频数据之间的模态差距。为了应对这些挑战,我们提出了自行车域的适应(CYCDA),这是一种基于周期的方法,用于通过在图像和视频中利用图像和视频中的联合空间信息来适应无监督的图像到视频域,另一方面,训练一个独立的时空模型,用于弥合模式差距。我们在每个周期中的两者之间的知识转移之间在空间和时空学习之间交替。我们在基准数据集上评估了图像到视频的方法,以及用于实现最新结果的混合源域的适应性,并证明了我们的循环适应性的好处。
translated by 谷歌翻译
为了使视频模型能够在不同环境中无缝应用,已经提出了各种视频无监督的域适应性(VUDA)方法来提高视频模型的鲁棒性和可传递性。尽管模型鲁棒性有所改进,但这些VUDA方法仍需要访问源数据和源模型参数以进行适应,从而提高了严重的数据隐私和模型可移植性问题。为了应对上述问题,本文首先将Black-Box视频域的适应(BVDA)制定为更现实但具有挑战性的场景,在该场景中,仅作为Black-Box预测器提供了源视频模型。尽管在图像域中提出了一些针对黑框域适应性(BDA)的方法,但这些方法不能适用于视频域,因为视频模式具有更复杂的时间特征,难以对齐。为了解决BVDA,我们通过应用蒙版到混合策略和视频量的正则化:内部正规化和外部正规化,提出了一个新颖的内野和外部正规化网络(EXTERS),在剪辑和时间特征上执行,并进行外部正规化,同时将知识从从黑框预测变量获得的预测中提炼出来。经验结果表明,在各种跨域封闭设置和部分集合动作识别基准中,外部的最先进性能甚至超过了具有源数据可访问性的大多数现有视频域适应方法。
translated by 谷歌翻译
作为对数据有效使用的研究,多源无监督的域适应性将知识从带有标记数据的多个源域转移到了未标记的目标域。但是,目标域中不同域和嘈杂的伪标签之间的分布差异都导致多源无监督域适应方法的性能瓶颈。鉴于此,我们提出了一种将注意力驱动的领域融合和耐噪声学习(ADNT)整合到上述两个问题的方法。首先,我们建立了相反的注意结构,以在特征和诱导域运动之间执行信息。通过这种方法,当域差异降低时,特征的可区分性也可以显着提高。其次,基于无监督的域适应训练的特征,我们设计了自适应的反向横向熵损失,该损失可以直接对伪标签的产生施加约束。最后,结合了这两种方法,几个基准的实验结果进一步验证了我们提出的ADNT的有效性,并证明了优于最新方法的性能。
translated by 谷歌翻译
最近,基于骨架的动作识别已经取得了快速进步和卓越的性能。在本文中,我们在跨数据集设置下调查了这个问题,这是现实情况下的新,务实且具有挑战性的任务。遵循无监督的域适应(UDA)范式,该动作标签仅在源数据集上可用,但在训练阶段的目标数据集中无法使用。与UDA的常规基于对抗性学习的方法不同,我们利用一个自学计划来减少两个基于骨架的动作数据集之间的域移动。我们的灵感来自Compism,Compism是20世纪初期的艺术类型,它破坏并重新组装了物体以传达更大的背景。通过分割和定制时间段或人体部位,我们设计了两个自制的学习分类任务,以探索基于骨架的动作的时间和空间依赖性,并提高模型的概括能力。我们在六个基于骨架的动作识别的数据集上进行实验,包括三个大规模数据集(NTU RGB+D,PKU-MMD和动力学),在其中建立了新的跨数据库设置和基准。广泛的结果表明,我们的方法优于最先进的方法。我们的模型和所有比较方法的源代码均可在https://github.com/shanice-l/st-cubism上获得。
translated by 谷歌翻译
现有的视频域改编(DA)方法需要存储视频帧的所有时间组合或配对源和目标视频,这些视频和目标视频成本昂贵,无法扩展到长时间的视频。为了解决这些局限性,我们建议采用以下记忆高效的基于图形的视频DA方法。首先,我们的方法模型每个源或目标视频通过图:节点表示视频帧和边缘表示帧之间的时间或视觉相似性关系。我们使用图形注意力网络来了解单个帧的重量,并同时将源和目标视频对齐到域不变的图形特征空间中。我们的方法没有存储大量的子视频,而是仅构建一个图形,其中一个视频的图形注意机制,从而大大降低了内存成本。广泛的实验表明,与最先进的方法相比,我们在降低内存成本的同时取得了卓越的性能。
translated by 谷歌翻译
在过去的几年中,无监督的域适应性(UDA)技术在计算机视觉中具有显着的重要性和流行。但是,与可用于图像的广泛文献相比,视频领域仍然相对尚未探索。另一方面,动作识别模型的性能受到域转移的严重影响。在本文中,我们提出了一种简单新颖的UDA方法,以供视频动作识别。我们的方法利用了时空变压器的最新进展来构建一个强大的源模型,从而更好地概括了目标域。此外,由于引入了来自信息瓶颈原则的新颖对齐损失术语,我们的架构将学习域不变功能。我们报告了UDA的两个视频动作识别基准的结果,显示了HMDB $ \ leftrightArrow $ ucf的最新性能,以及动力学$ \ rightarrow $ nec-Drone,这更具挑战性。这证明了我们方法在处理不同级别的域转移方面的有效性。源代码可在https://github.com/vturrisi/udavt上获得。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
深度学习已成为解决不同领域中现实世界中问题的首选方法,部分原因是它能够从数据中学习并在广泛的应用程序上实现令人印象深刻的性能。但是,它的成功通常取决于两个假设:(i)精确模型拟合需要大量标记的数据集,并且(ii)培训和测试数据是独立的且分布相同的。因此,不能保证它在看不见的目标域上的性能,尤其是在适应阶段遇到分布数据的数据时。目标域中数据的性能下降是部署深层神经网络的关键问题,这些网络已成功地在源域中的数据训练。通过利用标记的源域数据和未标记的目标域数据来执行目标域中的各种任务,提出了无监督的域适应(UDA)来对抗这一点。 UDA在自然图像处理,视频分析,自然语言处理,时间序列数据分析,医学图像分析等方面取得了令人鼓舞的结果。在本综述中,作为一个快速发展的主题,我们对其方法和应用程序进行了系统的比较。此外,还讨论了UDA与其紧密相关的任务的联系,例如域的概括和分布外检测。此外,突出显示了当前方法和可能有希望的方向的缺陷。
translated by 谷歌翻译
State-of-the-art 3D semantic segmentation models are trained on the off-the-shelf public benchmarks, but they often face the major challenge when these well-trained models are deployed to a new domain. In this paper, we propose an Active-and-Adaptive Segmentation (ADAS) baseline to enhance the weak cross-domain generalization ability of a well-trained 3D segmentation model, and bridge the point distribution gap between domains. Specifically, before the cross-domain adaptation stage begins, ADAS performs an active sampling operation to select a maximally-informative subset from both source and target domains for effective adaptation, reducing the adaptation difficulty under 3D scenarios. Benefiting from the rise of multi-modal 2D-3D datasets, ADAS utilizes a cross-modal attention-based feature fusion module that can extract a representative pair of image features and point features to achieve a bi-directional image-point feature interaction for better safe adaptation. Experimentally, ADAS is verified to be effective in many cross-domain settings including: 1) Unsupervised Domain Adaptation (UDA), which means that all samples from target domain are unlabeled; 2) Unsupervised Few-shot Domain Adaptation (UFDA) which means that only a few unlabeled samples are available in the unlabeled target domain; 3) Active Domain Adaptation (ADA) which means that the selected target samples by ADAS are manually annotated. Their results demonstrate that ADAS achieves a significant accuracy gain by easily coupling ADAS with self-training methods or off-the-shelf UDA works.
translated by 谷歌翻译
作为多媒体信息检索中越来越流行的任务,视频瞬间检索(VMR)旨在根据给定的语言查询从未修剪视频中定位目标时刻。以前的大多数方法都在很大程度上取决于众多手动注释(即瞬间边界),在实践中获取非常昂贵。此外,由于不同数据集之间的域间隙,直接将这些预训练的模型应用于看不见的域,这会导致显着的性能下降。在本文中,我们专注于一项新任务:跨域VMR,其中一个域中完全注重数据集(````源域'''),但是感兴趣的域(``目标域'')仅包含未通知的数据集。据我们所知,我们介绍了有关跨域VMR的第一项研究。为了解决这一新任务,我们提出了一个新型的多模式跨域比对(MMCDA)网络,以将注释知识从源域转移到目标域。但是,由于源和目标域之间的域差异以及视频和查询之间的语义差距,直接将经过训练的模型应用于目标域通常会导致性能下降。为了解决这个问题,我们开发了三个新型模块:(i)域对齐模块旨在使每种模式的不同域之间的特征分布对齐; (ii)跨模式对齐模块旨在将视频和查询特征映射到关节嵌入空间中,并将目标域不同模态之间的特征分布对齐; (iii)特定的比对模块试图获得特定帧与给定查询之间的细粒度相似性以进行最佳定位。通过共同训练这三个模块,我们的MMCDA可以学习域不变和语义一致的跨模式表示。
translated by 谷歌翻译
通用域的适应性(UDA)旨在将公共类的知识从源域转移到目标域,而无需对标签集的任何先验知识,这需要将未知样本与目标域中的已知样本区分开。最近的方法更喜欢增加已知类别中样本间亲和力,而它们忽略了未知样本与已知样本之间的样本间亲和力。本文表明,利用这种样本间亲和力可以显着提高UDA的性能,并提出基于IT的知识性UDA框架。首先,我们通过在源域中搜索其相邻样本来估计每个目标样本的可知性。然后,我们提出了一种适用于估计的可知性的自动阈值方案,以确定目标样本是未知还是已知。接下来,除了增加每个已知类别的样本间亲和力(如先前的方法)外,我们还根据估计的可知性设计新损失,以减少未知目标样本与已知目标样本之间的样本间亲和力。最后,在四个公共数据集上的实验表明,我们的方法显着胜过现有的最新方法。
translated by 谷歌翻译
Systems for person re-identification (ReID) can achieve a high accuracy when trained on large fully-labeled image datasets. However, the domain shift typically associated with diverse operational capture conditions (e.g., camera viewpoints and lighting) may translate to a significant decline in performance. This paper focuses on unsupervised domain adaptation (UDA) for video-based ReID - a relevant scenario that is less explored in the literature. In this scenario, the ReID model must adapt to a complex target domain defined by a network of diverse video cameras based on tracklet information. State-of-art methods cluster unlabeled target data, yet domain shifts across target cameras (sub-domains) can lead to poor initialization of clustering methods that propagates noise across epochs, thus preventing the ReID model to accurately associate samples of same identity. In this paper, an UDA method is introduced for video person ReID that leverages knowledge on video tracklets, and on the distribution of frames captured over target cameras to improve the performance of CNN backbones trained using pseudo-labels. Our method relies on an adversarial approach, where a camera-discriminator network is introduced to extract discriminant camera-independent representations, facilitating the subsequent clustering. In addition, a weighted contrastive loss is proposed to leverage the confidence of clusters, and mitigate the risk of incorrect identity associations. Experimental results obtained on three challenging video-based person ReID datasets - PRID2011, iLIDS-VID, and MARS - indicate that our proposed method can outperform related state-of-the-art methods. Our code is available at: \url{https://github.com/dmekhazni/CAWCL-ReID}
translated by 谷歌翻译
大多数现有的多源域适配(MSDA)方法通过特征分布对准最小化多个源 - 目标域对之间的距离,从单个源设置借用的方法。但是,对于不同的源极域,对齐成对特征分布是具有挑战性的,甚至可以对MSDA进行反效率。在本文中,我们介绍了一种新颖的方法:可转让的属性学习。动机很简单:虽然不同的域可以具有急剧不同的视野,但它们包含相同的类类,其特征在一起相同的属性;因此,MSDA模型应该专注于学习目标域的最可转换的属性。采用这种方法,我们提出了域名关注一致性网络,称为DAC网。关键设计是一个特征通道注意模块,旨在识别可转移功能(属性)。重要的是,注意模块受到一致性损失的监督,这对源极和目标域之间的信道注意权重的分布施加。此外,为了促进对目标数据的鉴别特征学习,我们将伪标记与类紧凑性丢失相结合,以最小化目标特征和分类器的权重向量之间的距离。在三个MSDA基准测试中进行了广泛的实验表明,我们的DAC-NET在所有这些中实现了新的最新性能。
translated by 谷歌翻译
在本报告中,我们描述了我们提交给Epic-Kitchens-100无监督的域适应(UDA)挑战的技术细节。为了应对UDA设置下存在的域移位,我们首先利用了最近的域概括(DG)技术,称为相对规范对准(RNA)。其次,我们将这种方法扩展到无标记的目标数据工作,从而使模型更简单地以无监督的方式适应目标分布。为此,我们将UDA算法包括在内,例如多级对抗对准和专心熵。通过分析挑战设置,我们注意到数据中存在二次并发转移,通常称为环境偏见。它是由存在不同环境(即厨房)引起的。为了处理这两个班次(环境和时间段),我们扩展了系统以执行多源多目标域的适应性。最后,我们在最终提案中采用了不同的模型来利用流行视频体系结构的潜力,并为合奏改编介绍了两次损失。我们的提交(条目“ PLNET”)在排行榜上可见,并在“动词”中排名第二,并且在“名词”和“ Action”中都处于第三位。
translated by 谷歌翻译
虽然无监督的域适应(UDA)算法,即,近年来只有来自源域的标记数据,大多数算法和理论结果侧重于单源无监督域适应(SUDA)。然而,在实际情况下,标记的数据通常可以从多个不同的源收集,并且它们可能不仅不同于目标域而且彼此不同。因此,来自多个源的域适配器不应以相同的方式进行建模。最近基于深度学习的多源无监督域适应(Muda)算法专注于通过在通用特征空间中的所有源极和目标域的分布对齐来提取所有域的公共域不变表示。但是,往往很难提取Muda中所有域的相同域不变表示。此外,这些方法匹配分布而不考虑类之间的域特定的决策边界。为了解决这些问题,我们提出了一个新的框架,具有两个对准阶段的Muda,它不仅将每对源和目标域的分布对齐,而且还通过利用域特定的分类器的输出对准决策边界。广泛的实验表明,我们的方法可以对图像分类的流行基准数据集实现显着的结果。
translated by 谷歌翻译
通过从完全标记的源域中利用数据,无监督域适应(UDA)通过显式差异最小化数据分布或对抗学习来提高未标记的目标域上的分类性能。作为增强,通过利用模型预测来加强目标特征识别期间涉及类别对齐。但是,在目标域上的错误类别预测中产生的伪标签不准确以及由源域的过度录制引起的分发偏差存在未探明的问题。在本文中,我们提出了一种模型 - 不可知的两阶段学习框架,这大大减少了使用软伪标签策略的缺陷模型预测,并避免了课程学习策略的源域上的过度拟合。从理论上讲,它成功降低了目标域上预期误差的上限的综合风险。在第一阶段,我们用分布对齐的UDA方法训练一个模型,以获得具有相当高的置位目标域上的软语义标签。为了避免在源域上的过度拟合,在第二阶段,我们提出了一种课程学习策略,以自适应地控制来自两个域的损失之间的加权,以便训练阶段的焦点从源分布逐渐移位到目标分布,以预测信心提升了目标分布在目标领域。对两个知名基准数据集的广泛实验验证了我们提出框架促进促进顶级UDA算法的性能的普遍效果,并展示其一致的卓越性能。
translated by 谷歌翻译