Face manipulation technology is advancing very rapidly, and new methods are being proposed day by day. The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world. Our key insight is that each person has specific biometric characteristics that a synthetic generator cannot likely reproduce. Accordingly, we extract high-level audio-visual biometric features which characterize the identity of a person, and use them to create a person-of-interest (POI) deepfake detector. We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity. As a result, when the video and/or audio of a person is manipulated, its representation in the embedding space becomes inconsistent with the real identity, allowing reliable detection. Training is carried out exclusively on real talking-face videos, thus the detector does not depend on any specific manipulation method and yields the highest generalization ability. In addition, our method can detect both single-modality (audio-only, video-only) and multi-modality (audio-video) attacks, and is robust to low-quality or corrupted videos by building only on high-level semantic features. Experiments on a wide variety of datasets confirm that our method ensures a SOTA performance, with an average improvement in terms of AUC of around 3%, 10%, and 4% for high-quality, low quality, and attacked videos, respectively. https://github.com/grip-unina/poi-forensics
translated by 谷歌翻译
得益于深度学习的最新进展,如今存在复杂的生成工具,这些工具产生了极其现实的综合语音。但是,这种工具的恶意使用是可能的,有可能对我们的社会构成严重威胁。因此,合成语音检测已成为一个紧迫的研究主题,最近提出了各种各样的检测方法。不幸的是,它们几乎没有概括为在训练阶段从未见过的工具产生的合成音频,这使他们不适合面对现实世界的情况。在这项工作中,我们旨在通过提出一种仅利用说话者的生物特征的新检测方法来克服这个问题,而无需提及特定的操纵。由于仅在实际数据上对检测器进行训练,因此可以自动确保概括。建议的方法可以基于现成的扬声器验证工具实现。我们在三个流行的测试集上测试了几种这样的解决方案,从而获得了良好的性能,高概括能力和高度鲁棒性。
translated by 谷歌翻译
在今天的数字错误信息的时代,我们越来越受到视频伪造技术构成的新威胁。这种伪造的范围从Deepfakes(例如,复杂的AI媒体合成方法)的经济饼(例如,精致的AI媒体合成方法)从真实视频中无法区分。为了解决这一挑战,我们提出了一种多模态语义法医法,可以发现超出视觉质量差异的线索,从而处理更简单的便宜赌注和视觉上有说服力的德国。在这项工作中,我们的目标是验证视频中看到的据称人士确实是通过检测他们的面部运动与他们所说的词语之间的异常对应。我们利用归因的想法,以了解特定于人的生物识别模式,将给定发言者与他人区分开来。我们使用可解释的行动单位(AUS)来捕捉一个人的面部和头部运动,而不是深入的CNN视觉功能,我们是第一个使用字样的面部运动分析。与现有的人特定的方法不同,我们的方法也有效地对抗专注于唇部操纵的攻击。我们进一步展示了我们的方法在培训中没有看到的一系列假装的效率,包括未经视频操纵的培训,这在事先工作中没有解决。
translated by 谷歌翻译
由于滥用了深层,检测伪造视频是非常可取的。现有的检测方法有助于探索DeepFake视频中的特定工件,并且非常适合某些数据。但是,这些人工制品的不断增长的技术一直在挑战传统的深泡探测器的鲁棒性。结果,这些方法的普遍性的发展已达到阻塞。为了解决这个问题,鉴于经验结果是,深层视频中经常在声音和面部背后的身份不匹配,并且声音和面孔在某种程度上具有同质性,在本文中,我们建议从未开发的语音中执行深层检测 - 面对匹配视图。为此,设计了一种语音匹配方法来测量这两个方法的匹配度。然而,对特定的深泡数据集进行培训使模型过于拟合深层算法的某些特征。相反,我们提倡一种迅速适应未开发的伪造方法的方法,然后进行预训练,然后进行微调范式。具体而言,我们首先在通用音频视频数据集上预先培训该模型,然后在下游深板数据上进行微调。我们对三个广泛利用的DeepFake数据集进行了广泛的实验-DFDC,Fakeavceleb和DeepFaketimit。与其他最先进的竞争对手相比,我们的方法获得了显着的性能增长。还值得注意的是,我们的方法在有限的DeepFake数据上进行了微调时已经取得了竞争性结果。
translated by 谷歌翻译
Online media data, in the forms of images and videos, are becoming mainstream communication channels. However, recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost, which not only poses a serious threat to the trustworthiness of digital information but also has severe societal implications. This motivates a growing interest of research in media tampering detection, i.e., using deep learning techniques to examine whether media data have been maliciously manipulated. Depending on the content of the targeted images, media forgery could be divided into image tampering and Deepfake techniques. The former typically moves or erases the visual elements in ordinary images, while the latter manipulates the expressions and even the identity of human faces. Accordingly, the means of defense include image tampering detection and Deepfake detection, which share a wide variety of properties. In this paper, we provide a comprehensive review of the current media tampering detection approaches, and discuss the challenges and trends in this field for future research.
translated by 谷歌翻译
Video synthesis methods rapidly improved in recent years, allowing easy creation of synthetic humans. This poses a problem, especially in the era of social media, as synthetic videos of speaking humans can be used to spread misinformation in a convincing manner. Thus, there is a pressing need for accurate and robust deepfake detection methods, that can detect forgery techniques not seen during training. In this work, we explore whether this can be done by leveraging a multi-modal, out-of-domain backbone trained in a self-supervised manner, adapted to the video deepfake domain. We propose FakeOut; a novel approach that relies on multi-modal data throughout both the pre-training phase and the adaption phase. We demonstrate the efficacy and robustness of FakeOut in detecting various types of deepfakes, especially manipulations which were not seen during training. Our method achieves state-of-the-art results in cross-manipulation and cross-dataset generalization. This study shows that, perhaps surprisingly, training on out-of-domain videos (i.e., videos with no speaking humans), can lead to better deepfake detection systems. Code is available on GitHub.
translated by 谷歌翻译
鉴于我们不断增加的在线形象和信息摄入,现实的虚假视频是传播有害错误信息的潜在工具。本文提出了一种基于多模式学习的方法,用于检测真实和虚假视频。该方法结合了来自三种模式的信息 - 音频,视频和生理学。我们通过将视频与生理学的信息增加或通过新颖地学习这两种方式与所提出的图形卷积网络体系结构的融合来研究两种结合视频和生理方式的策略。两种结合两种方式的策略都取决于一种新方法来生成生理信号的视觉表示。然后,对真实视频和虚假视频的检测是基于音频和修改视频方式之间的差异。在两个基准数据集上评估了所提出的方法,与以前的方法相比,结果显示检测性能显着增加。
translated by 谷歌翻译
深度学习已成功地用于解决从大数据分析到计算机视觉和人级控制的各种复杂问题。但是,还采用了深度学习进步来创建可能构成隐私,民主和国家安全威胁的软件。最近出现的那些深度学习驱动的应用程序之一是Deepfake。 DeepFake算法可以创建人类无法将它们与真实图像区分开的假图像和视频。因此,可以自动检测和评估数字视觉媒体完整性的技术的建议是必不可少的。本文介绍了一项用于创造深击的算法的调查,更重要的是,提出的方法旨在检测迄今为止文献中的深击。我们对与Deepfake技术有关的挑战,研究趋势和方向进行了广泛的讨论。通过回顾深层味和最先进的深层检测方法的背景,本研究提供了深入的深层技术的概述,并促进了新的,更强大的方法的发展,以应对日益挑战性的深击。
translated by 谷歌翻译
主动演讲者的检测和语音增强已成为视听场景中越来越有吸引力的主题。根据它们各自的特征,独立设计的体系结构方案已被广泛用于与每个任务的对应。这可能导致模型特定于任务所学的表示形式,并且不可避免地会导致基于多模式建模的功能缺乏概括能力。最近的研究表明,建立听觉和视觉流之间的跨模式关系是针对视听多任务学习挑战的有前途的解决方案。因此,作为弥合视听任务中多模式关联的动机,提出了一个统一的框架,以通过在本研究中通过联合学习视听模型来实现目标扬声器的检测和语音增强。
translated by 谷歌翻译
In this paper, we introduce MINTIME, a video deepfake detection approach that captures spatial and temporal anomalies and handles instances of multiple people in the same video and variations in face sizes. Previous approaches disregard such information either by using simple a-posteriori aggregation schemes, i.e., average or max operation, or using only one identity for the inference, i.e., the largest one. On the contrary, the proposed approach builds on a Spatio-Temporal TimeSformer combined with a Convolutional Neural Network backbone to capture spatio-temporal anomalies from the face sequences of multiple identities depicted in a video. This is achieved through an Identity-aware Attention mechanism that attends to each face sequence independently based on a masking operation and facilitates video-level aggregation. In addition, two novel embeddings are employed: (i) the Temporal Coherent Positional Embedding that encodes each face sequence's temporal information and (ii) the Size Embedding that encodes the size of the faces as a ratio to the video frame size. These extensions allow our system to adapt particularly well in the wild by learning how to aggregate information of multiple identities, which is usually disregarded by other methods in the literature. It achieves state-of-the-art results on the ForgeryNet dataset with an improvement of up to 14% AUC in videos containing multiple people and demonstrates ample generalization capabilities in cross-forgery and cross-dataset settings. The code is publicly available at https://github.com/davide-coccomini/MINTIME-Multi-Identity-size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection.
translated by 谷歌翻译
作为内容编辑成熟的工具,以及基于人工智能(AI)综合媒体增长的算法,在线媒体上的操纵内容的存在正在增加。这种现象导致错误信息的传播,从而更需要区分“真实”和“操纵”内容。为此,我们介绍了Videosham,该数据集由826个视频(413个真实和413个操纵)组成。许多现有的DeepFake数据集专注于两种类型的面部操作 - 与另一个受试者的面部交换或更改现有面部。另一方面,Videosham包含更多样化的,上下文丰富的和以人为本的高分辨率视频,使用6种不同的空间和时间攻击组合来操纵。我们的分析表明,最新的操纵检测算法仅适用于一些特定的攻击,并且在Videosham上不能很好地扩展。我们在亚马逊机械土耳其人上进行了一项用户研究,其中1200名参与者可以区分Videosham中的真实视频和操纵视频。最后,我们更深入地研究了人类和sota-Algorithms表演的优势和劣势,以识别需要用更好的AI算法填补的差距。
translated by 谷歌翻译
在过去的几年中,虚假内容的增长速度令人难以置信。社交媒体和在线平台的传播使他们的恶意演员越来越多地传播大规模的传播。同时,由于虚假图像生成方法的扩散越来越大,已经提出了许多基于深度学习的检测技术。这些方法中的大多数依赖于从RGB图像中提取显着特征,以通过二进制分类器检测图像是假的或真实的。在本文中,我们提出了DepthFake,这是一项有关如何使用深度图改善基于经典RGB的方法的研究。深度信息是从具有最新单眼深度估计技术的RGB图像中提取的。在这里,我们证明了深度映射对深料检测任务的有效贡献对稳健的预训练架构。实际上,针对faceforensic ++数据集的标准RGB体系结构,对于一些DeepFake攻击,对一些DeepFake攻击的平均提高了3.20%和11.7%。
translated by 谷歌翻译
随着过去五年的快速发展,面部身份验证已成为最普遍的生物识别方法。得益于高准确的识别性能和用户友好的用法,自动面部识别(AFR)已爆炸成多次实用的应用程序,而不是设备解锁,签到和经济支付。尽管面部身份验证取得了巨大的成功,但各种面部表现攻击(FPA),例如印刷攻击,重播攻击和3D面具攻击,但仍引起了不信任的问题。除了身体上的攻击外,面部视频/图像很容易受到恶意黑客发起的各种数字攻击技术的影响,从而对整个公众造成了潜在的威胁。由于无限制地访问了巨大的数字面部图像/视频,并披露了互联网上流通的易于使用的面部操纵工具,因此没有任何先前专业技能的非专家攻击者能够轻松创建精致的假面,从而导致许多危险的应用程序例如财务欺诈,模仿和身份盗用。这项调查旨在通过提供对现有文献的彻底分析并突出需要进一步关注的问题来建立面部取证的完整性。在本文中,我们首先全面调查了物理和数字面部攻击类型和数据集。然后,我们回顾了现有的反攻击方法的最新和最先进的进度,并突出显示其当前限制。此外,我们概述了面对法医社区中现有和即将面临的挑战的未来研究指示。最后,已经讨论了联合物理和数字面部攻击检​​测的必要性,这在先前的调查中从未进行过研究。
translated by 谷歌翻译
近年来,随着面部编辑和发电的迅速发展,越来越多的虚假视频正在社交媒体上流传,这引起了极端公众的关注。基于频域的现有面部伪造方法发现,与真实图像相比,GAN锻造图像在频谱中具有明显的网格视觉伪像。但是对于综合视频,这些方法仅局限于单个帧,几乎不关注不同框架之间最歧视的部分和时间频率线索。为了充分利用视频序列中丰富的信息,本文对空间和时间频域进行了视频伪造检测,并提出了一个离散的基于余弦转换的伪造线索增强网络(FCAN-DCT),以实现更全面的时空功能表示。 FCAN-DCT由一个骨干网络和两个分支组成:紧凑特征提取(CFE)模块和频率时间注意(FTA)模块。我们对两个可见光(VIS)数据集Wilddeepfake和Celeb-DF(V2)进行了彻底的实验评估,以及我们的自我构建的视频伪造数据集DeepFakenir,这是第一个近境模式的视频伪造数据集。实验结果证明了我们方法在VIS和NIR场景中检测伪造视频的有效性。
translated by 谷歌翻译
强大的深度学习技术的发展为社会和个人带来了一些负面影响。一个这样的问题是假媒体的出现。为了解决这个问题,我们组织了可信赖的媒体挑战(TMC)来探讨人工智能(AI)如何利用如何打击假媒体。我们与挑战一起发布了一个挑战数据集,由4,380张假和2,563个真实视频组成。所有这些视频都伴随着Audios,采用不同的视频和/或音频操作方法来生产不同类型的假媒体。数据集中的视频具有各种持续时间,背景,照明,最小分辨率为360p,并且可能包含模拟传输误差和不良压缩的扰动。我们还开展了用户学习,以展示所作数据集的质量。结果表明,我们的数据集具有有希望的质量,可以在许多情况下欺骗人类参与者。
translated by 谷歌翻译
视听扬声器日复速度旨在检测使用听觉和视觉信号时的``谁说话。现有的视听深度数据集主要专注于会议室或新闻工作室等室内环境,这些工作室与电影,纪录片和观众情景喜剧等许多情景中的野外视频完全不同。要创建一个能够有效地比较野外视频的日复速度方法的测试平台,我们向AVA电影数据集注释说话者深度标签,并创建一个名为AVA-AVD的新基准。由于不同的场景,复杂的声学条件和完全偏离屏幕扬声器,该基准是挑战。然而,如何处理偏离屏幕和屏幕上的扬声器仍然是一个关键挑战。为了克服它,我们提出了一种新的视听关系网络(AVR-Net),它引入了有效的模态掩模,以基于可见性捕获辨别信息。实验表明,我们的方法不仅可以优于最先进的方法,而且可以更加强大,因为改变屏幕扬声器的比率。消融研究证明了拟议的AVR-NET和尤其是日复一化的模态掩模的优点。我们的数据和代码将公开可用。
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
AI的最新进展,尤其是深度学习,导致创建新的现实合成媒体(视频,图像和音频)以及对现有媒体的操纵的创建显着增加,这导致了新术语的创建。 'deepfake'。基于英语和中文中的研究文献和资源,本文对Deepfake进行了全面的概述,涵盖了这一新兴概念的多个重要方面,包括1)不同的定义,2)常用的性能指标和标准以及3)与DeepFake相关的数据集,挑战,比赛和基准。此外,该论文还报告了2020年和2021年发表的12条与DeepFake相关的调查论文的元评估,不仅关注上述方面,而且集中在对关键挑战和建议的分析上。我们认为,就涵盖的各个方面而言,本文是对深层的最全面评论,也是第一个涵盖英语和中国文学和资源的文章。
translated by 谷歌翻译
随着面部伪造技术的快速发展,DeepFake视频在数字媒体上引起了广泛的关注。肇事者大量利用这些视频来传播虚假信息并发表误导性陈述。大多数现有的DeepFake检测方法主要集中于纹理特征,纹理特征可能会受到外部波动(例如照明和噪声)的影响。此外,基于面部地标的检测方法对外部变量更强大,但缺乏足够的细节。因此,如何在空间,时间和频域中有效地挖掘独特的特征,并将其与面部地标融合以进行伪造视频检测仍然是一个悬而未决的问题。为此,我们提出了一个基于多种模式的信息和面部地标的几何特征,提出了地标增强的多模式图神经网络(LEM-GNN)。具体而言,在框架级别上,我们设计了一种融合机制来挖掘空间和频域元素的联合表示,同时引入几何面部特征以增强模型的鲁棒性。在视频级别,我们首先将视频中的每个帧视为图中的节点,然后将时间信息编码到图表的边缘。然后,通过应用图形神经网络(GNN)的消息传递机制,将有效合并多模式特征,以获得视频伪造的全面表示。广泛的实验表明,我们的方法始终优于广泛使用的基准上的最先进(SOTA)。
translated by 谷歌翻译
In this paper we present TruFor, a forensic framework that can be applied to a large variety of image manipulation methods, from classic cheapfakes to more recent manipulations based on deep learning. We rely on the extraction of both high-level and low-level traces through a transformer-based fusion architecture that combines the RGB image and a learned noise-sensitive fingerprint. The latter learns to embed the artifacts related to the camera internal and external processing by training only on real data in a self-supervised manner. Forgeries are detected as deviations from the expected regular pattern that characterizes each pristine image. Looking for anomalies makes the approach able to robustly detect a variety of local manipulations, ensuring generalization. In addition to a pixel-level localization map and a whole-image integrity score, our approach outputs a reliability map that highlights areas where localization predictions may be error-prone. This is particularly important in forensic applications in order to reduce false alarms and allow for a large scale analysis. Extensive experiments on several datasets show that our method is able to reliably detect and localize both cheapfakes and deepfakes manipulations outperforming state-of-the-art works. Code will be publicly available at https://grip-unina.github.io/TruFor/
translated by 谷歌翻译