在没有人为干预的图像自动色彩上是在机器学习界的兴趣中的一个短暂的时间。分配颜色到图像是一个非常令人虐待的问题,因为它具有非常高的自由度的先天性;给定图像,通常没有单一的颜色组合是正确的。除了着色之外,图像重建中的另一个问题是单图像超分辨率,其旨在将低分辨率图像转换为更高的分辨率。该研究旨在通过专注于图像的非常特定的图像,即天文图像,并使用生成的对抗网络(GAN)来提供自动化方法。我们探索两种不同颜色空间,RGB和L * A *中各种型号的使用。我们使用传输学习,由于小数据集,使用预先训练的Reset-18作为骨干,即U-Net的编码器,进一步微调。该模型产生视觉上有吸引力的图像,其在原始图像中不存在的这些结果中呈现的高分辨率高分辨率,着色数据。我们通过使用所有通道的每个颜色空间中的距离度量(例如L1距离和L2距离)评估GAN来提供我们的结果,以提供比较分析。我们使用Frechet Inception距离(FID)将生成的图像的分布与实际图像的分布进行比较,以评估模型的性能。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
In medical image analysis, low-resolution images negatively affect the performance of medical image interpretation and may cause misdiagnosis. Single image super-resolution (SISR) methods can improve the resolution and quality of medical images. Currently, Generative Adversarial Networks (GAN) based super-resolution models have shown very good performance. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is one of the practical GAN-based models which is widely used in the field of general image super-resolution. One of the challenges in medical image super-resolution is that, unlike natural images, medical images do not have high spatial resolution. To solve this problem, we can use transfer learning technique and fine-tune the model that has been trained on external datasets (often natural datasets). In our proposed approach, the pre-trained generator and discriminator networks of the Real-ESRGAN model are fine-tuned using medical image datasets. In this paper, we worked on chest X-ray and retinal images and used the STARE dataset of retinal images and Tuberculosis Chest X-rays (Shenzhen) dataset for fine-tuning. The proposed model produces more accurate and natural textures, and its outputs have better detail and resolution compared to the original Real-ESRGAN outputs.
translated by 谷歌翻译
The primary aim of single-image super-resolution is to construct a high-resolution (HR) image from a corresponding low-resolution (LR) input. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present a novel super-resolution algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require training on databases of LR-HR image pairs for supervised learning). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the "downscaling loss," which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee that our outputs are realistic. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show extensive experimental results demonstrating the efficacy of our approach in the domain of face super-resolution (also known as face hallucination). We also present a discussion of the limitations and biases of the method as currently implemented with an accompanying model card with relevant metrics. Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously pos-sible.
translated by 谷歌翻译
Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image superresolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4× upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
translated by 谷歌翻译
盲目图像超分辨率(SR)是CV的长期任务,旨在恢复患有未知和复杂扭曲的低分辨率图像。最近的工作主要集中在采用更复杂的退化模型来模拟真实世界的降级。由此产生的模型在感知损失和产量感知令人信服的结果取得了突破性。然而,电流生成的对抗性网络结构所带来的限制仍然是显着的:处理像素同样地导致图像的结构特征的无知,并且导致性能缺点,例如扭曲线和背景过度锐化或模糊。在本文中,我们提出了A-ESRAN,用于盲人SR任务的GAN模型,其特色是基于U-NET的U-NET的多尺度鉴别器,可以与其他发电机无缝集成。据我们所知,这是第一项介绍U-Net结构作为GaN解决盲人问题的鉴别者的工作。本文还给出了对模型的多规模注意力突破的机制的解释。通过对现有作品的比较实验,我们的模型在非参考自然图像质量评估员度量上提出了最先进的水平性能。我们的消融研究表明,利用我们的鉴别器,基于RRDB的发电机可以利用多种尺度中图像的结构特征,因此与先前作品相比,更加感知地产生了感知的高分辨率图像。
translated by 谷歌翻译
The Super-Resolution Generative Adversarial Network (SR-GAN) [1] is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGANnetwork architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN [2] to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge 1 [3]. The code is available at https://github.com/xinntao/ESRGAN.
translated by 谷歌翻译
Single image super-resolution is the task of inferring a high-resolution image from a single low-resolution input. Traditionally, the performance of algorithms for this task is measured using pixel-wise reconstruction measures such as peak signal-to-noise ratio (PSNR) which have been shown to correlate poorly with the human perception of image quality. As a result, algorithms minimizing these metrics tend to produce over-smoothed images that lack highfrequency textures and do not look natural despite yielding high PSNR values.We propose a novel application of automated texture synthesis in combination with a perceptual loss focusing on creating realistic textures rather than optimizing for a pixelaccurate reproduction of ground truth images during training. By using feed-forward fully convolutional neural networks in an adversarial training setting, we achieve a significant boost in image quality at high magnification ratios. Extensive experiments on a number of datasets show the effectiveness of our approach, yielding state-of-the-art results in both quantitative and qualitative benchmarks.
translated by 谷歌翻译
Our goal with this survey is to provide an overview of the state of the art deep learning technologies for face generation and editing. We will cover popular latest architectures and discuss key ideas that make them work, such as inversion, latent representation, loss functions, training procedures, editing methods, and cross domain style transfer. We particularly focus on GAN-based architectures that have culminated in the StyleGAN approaches, which allow generation of high-quality face images and offer rich interfaces for controllable semantics editing and preserving photo quality. We aim to provide an entry point into the field for readers that have basic knowledge about the field of deep learning and are looking for an accessible introduction and overview.
translated by 谷歌翻译
Deep learning techniques have made considerable progress in image inpainting, restoration, and reconstruction in the last few years. Image outpainting, also known as image extrapolation, lacks attention and practical approaches to be fulfilled, owing to difficulties caused by large-scale area loss and less legitimate neighboring information. These difficulties have made outpainted images handled by most of the existing models unrealistic to human eyes and spatially inconsistent. When upsampling through deconvolution to generate fake content, the naive generation methods may lead to results lacking high-frequency details and structural authenticity. Therefore, as our novelties to handle image outpainting problems, we introduce structural prior as a condition to optimize the generation quality and a new semantic embedding term to enhance perceptual sanity. we propose a deep learning method based on Generative Adversarial Network (GAN) and condition edges as structural prior in order to assist the generation. We use a multi-phase adversarial training scheme that comprises edge inference training, contents inpainting training, and joint training. The newly added semantic embedding loss is proved effective in practice.
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译
现实的高光谱图像(HSI)超分辨率(SR)技术旨在从其低分辨率(LR)对应物中产生具有更高光谱和空间忠诚的高分辨率(HR)HSI。生成的对抗网络(GAN)已被证明是图像超分辨率的有效深入学习框架。然而,现有GaN的模型的优化过程经常存在模式崩溃问题,导致光谱间不变重建容量有限。这可能导致所生成的HSI上的光谱空间失真,尤其是具有大的升级因子。为了缓解模式崩溃的问题,这项工作提出了一种与潜在编码器(Le-GaN)耦合的新型GaN模型,其可以将产生的光谱空间特征从图像空间映射到潜在空间并产生耦合组件正规化生成的样本。基本上,我们将HSI视为嵌入在潜在空间中的高维歧管。因此,GaN模型的优化被转换为学习潜在空间中的高分辨率HSI样本的分布的问题,使得产生的超分辨率HSI的分布更接近其原始高分辨率对应物的那些。我们对超级分辨率的模型性能进行了实验评估及其在缓解模式崩溃中的能力。基于具有不同传感器(即Aviris和UHD-185)的两种实际HSI数据集进行了测试和验证,用于各种升高因素并增加噪声水平,并与最先进的超分辨率模型相比(即Hyconet,LTTR,Bagan,SR-GaN,Wgan)。
translated by 谷歌翻译
尽管应用于自然图像的大量成功的超分辨率重建(SRR)模型,但它们在遥感图像中的应用往往会产生差的结果。遥感图像通常比自然图像更复杂,并且具有较低分辨率的特殊性,它包含噪音,并且通常描绘了大质感表面。结果,将非专业的SRR模型应用于遥感图像,从而导致人工制品和不良的重建。为了解决这些问题,本文提出了一种受到先前研究工作启发的体系结构,引入了一种新的方法来迫使SRR模型输出现实的遥感图像:而不是依靠功能空间相似性作为感知损失,而是将其视为Pixel-从图像的归一化数字表面模型(NDSM)推断出的级别信息。该策略允许在训练模型期间应用更具信息的更新,该模型从任务(高程图推理)源中源,该模型与遥感密切相关。但是,在生产过程中不需要NDSM辅助信息,因此该模型除了其低分辨率对以外没有任何其他数据,因此该模型还没有任何其他数据。我们在两个远程感知的不同空间分辨率的数据集上评估了我们的模型,这些数据集也包含图像的DSM对:DFC2018数据集和包含卢森堡国家激光雷达飞行的数据集。根据视觉检查,推断的超分辨率图像表现出特别优越的质量。特别是,高分辨率DFC2018数据集的结果是现实的,几乎与地面真相图像没有区别。
translated by 谷歌翻译
可以使用超分辨率方法改善医学图像的空间分辨率。实际增强的超级分辨率生成对抗网络(Real-Esrgan)是最近用于产生较高分辨率图像的最新有效方法之一,给定较低分辨率的输入图像。在本文中,我们应用这种方法来增强2D MR图像的空间分辨率。在我们提出的方法中,我们稍微修改了从脑肿瘤分割挑战(BRATS)2018数据集中训练2D磁共振图像(MRI)的结构。通过计算SSIM(结构相似性指数量度),NRMSE(归一化根平方误),MAE(平均绝对误差)和VIF(视觉信息保真度)值,通过计算SSIM(结构相似性指数量度)进行定性和定量验证。
translated by 谷歌翻译
从文本描述中综合现实图像是计算机视觉中的主要挑战。当前对图像合成方法的文本缺乏产生代表文本描述符的高分辨率图像。大多数现有的研究都依赖于生成的对抗网络(GAN)或变异自动编码器(VAE)。甘斯具有产生更清晰的图像的能力,但缺乏输出的多样性,而VAE擅长生产各种输出,但是产生的图像通常是模糊的。考虑到gan和vaes的相对优势,我们提出了一个新的有条件VAE(CVAE)和条件gan(CGAN)网络架构,用于合成以文本描述为条件的图像。这项研究使用条件VAE作为初始发电机来生成文本描述符的高级草图。这款来自第一阶段的高级草图输出和文本描述符被用作条件GAN网络的输入。第二阶段GAN产生256x256高分辨率图像。所提出的体系结构受益于条件加强和有条件的GAN网络的残留块,以实现结果。使用CUB和Oxford-102数据集进行了多个实验,并将所提出方法的结果与Stackgan等最新技术进行了比较。实验表明,所提出的方法生成了以文本描述为条件的高分辨率图像,并使用两个数据集基于Inception和Frechet Inception评分产生竞争结果
translated by 谷歌翻译
Labels to Facade BW to Color Aerial to Map Labels to Street Scene Edges to Photo input output input input input input output output output output input output Day to Night Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels. Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show results of the method on several. In each case we use the same architecture and objective, and simply train on different data.
translated by 谷歌翻译
Learning a good image prior is a long-term goal for image restoration and manipulation. While existing methods like deep image prior (DIP) capture low-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images. As shown in Fig. 1, the deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images. It also enables diverse image manipulation including random jittering, image morphing, and category transfer. Such highly flexible restoration and manipulation are made possible through relaxing the assumption of existing GAN-inversion methods, which tend to fix the generator. Notably, we allow the generator to be fine-tuned on-the-fly in a progressive manner regularized by feature distance obtained by the discriminator in GAN. We show that these easy-to-implement and practical changes help preserve the reconstruction to remain in the manifold of nature image, and thus lead to more precise and faithful reconstruction for real images. Code is available at https://github.com/XingangPan/deepgenerative-prior.
translated by 谷歌翻译
FREDSR is a GAN variant that aims to outperform traditional GAN models in specific tasks such as Single Image Super Resolution with extreme parameter efficiency at the cost of per-dataset generalizeability. FREDSR integrates fast Fourier transformation, residual prediction, diffusive discriminators, etc to achieve strong performance in comparisons to other models on the UHDSR4K dataset for Single Image 3x Super Resolution from 360p and 720p with only 37000 parameters. The model follows the characteristics of the given dataset, resulting in lower generalizeability but higher performance on tasks such as real time up-scaling.
translated by 谷歌翻译
这项研究建议使用生成模型(GAN)来增强欧洲裔欧洲裔数据集用于土地使用和土地覆盖(LULC)分类任务。我们使用DCGAN和WGAN-GP为数据集中的每个类生成图像。然后,我们探讨了在每种情况下将原始数据集增加约10%的效果对模型性能。GAN体系结构的选择似乎对模型性能没有明显的影响。然而,几何增强和GAN生成图像的结合改善了基线结果。我们的研究表明,GANS的增强可以改善卫星图像上深层分类模型的普遍性。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译