在深度学习领域,已经开发了各种架构。然而,由于固定层结构,大多数研究限于特定的任务或数据集。本文不将信息提供作为网络模型的结构,而是作为称为关联树(AT)的数据结构。我们提出了两个人工协会网络(AAN),旨在通过分析人类神经网络的结构来解决现有网络的问题。定义单个图中的路径的起始点和结束点是困难的,并且树不能表达兄弟节点之间的关系。相反,AT可以表达叶子和根节点作为路径的起始点和兄弟节点之间的关系。根据树的结构而不是使用固定序列层,而不是使用固定序列图层为每个数据创建AT,并培训AAN。 AAN是数据驱动的学习,其中卷曲的数量根据树的深度而变化。此外,AAN可以通过递归学习同时学习各种类型的数据集。深度 - 第一卷积(DFC)将叶节点的交互结果以自下而上的方法对根节点进行编码到根节点,深度第一解码(DFD)将交互结果解码为自上而下的叶节点方法。我们进行了三个实验。第一个实验验证了是否可以通过组合AAN和特征提取网络来处理它。在第二,我们将网络的性能与单独学习的图像,声音和树,图形结构数据集进行了比较,通过连接这些网络同时学习的性能。在第三,我们验证了AAN的输出是否可以嵌入AT中的所有数据。因此,AATS学到了没有显着性能下降的情况。
translated by 谷歌翻译
在本文中,我们介绍了图形树演绎网络,这是一种执行演绎推理的网络。为了产生新的关系和结果,需要高维思维,将各种公理和将结果放回另一个公理中,是必要的。例如,它会给两个命题:“苏格拉底是一个男人。”“所有人都是凡人。”两个命题可以用来推断出新的命题,“因此苏格拉底是凡人。”。为了评估,我们使用了Mnist DataSet,手写数值图像数据集,将其应用于组理论并显示执行演绎学习的结果。
translated by 谷歌翻译
本文通过自然应用程序对网页和元素分类来解决复杂结构数据的高效表示的问题。我们假设网页内部元素周围的上下文对问题的价值很高,目前正在被利用。本文旨在通过考虑到其上下文来解决将Web元素分类为DOM树的子树的问题。为实现这一目标,首先讨论当前在结构上工作的专家知识系统,如树 - LSTM。然后,我们向该模型提出上下文感知扩展。我们表明,在多级Web分类任务中,新模型实现了0.7973的平均F1分数。该模型为各种子树生成更好的表示,并且可以用于应用此类元素分类,钢筋在网上学习中的状态估计等。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
当使用深度学习技术对程序语言进行建模时,广泛采用了带有树或图形结构的神经网络,以捕获程序抽象语法树(AST)中的丰富结构信息。但是,计划中广泛存在长期/全球依赖性,大多数这些神经体系结构无法捕获这些依赖性。在本文中,我们提出了Tree-Transformer,这是一种新型的递归树结构神经网络,旨在克服上述局限性。树转化器利用两个多头注意单元来建模兄弟姐妹和父子节点对之间的依赖关系。此外,我们提出了一个双向传播策略,以允许节点信息向两个方向传递:沿树木的自下而上和自上而下。通过结合自下而上和自上而下的传播,树转化器可以同时学习全局上下文和有意义的节点特征。广泛的实验结果表明,我们的树转换器在具有树级和节点级别的预测任务中,在与程序相关的任务中优于现有基于树或基于图的神经网络,这表明Tree-Transformer在学习两个树级时都表现良好和节点级表示。
translated by 谷歌翻译
尽管不断努力提高代码搜索的有效性和效率,但仍未解决两个问题。首先,编程语言具有固有的牢固结构链接,并且代码的特征是文本表单将省略其中包含的结构信息。其次,代码和查询之间存在潜在的语义关系,跨序列对齐代码和文本是具有挑战性的,因此在相似性匹配期间,向量在空间上保持一致。为了解决这两个问题,在本文中,提出了一个名为CSSAM的代码搜索模型(代码语义和结构注意匹配)。通过引入语义和结构匹配机制,CSSAM有效提取并融合了多维代码功能。具体而言,开发了交叉和残留层,以促进代码和查询的高纬度空间比对。通过利用残差交互,匹配模块旨在保留更多的代码语义和描述性功能,从而增强了代码及其相应查询文本之间的附着力。此外,为了提高模型对代码固有结构的理解,提出了一个名为CSRG的代码表示结构(代码语义表示图),用于共同表示抽象语法树节点和代码的数据流。根据两个包含540K和330K代码段的公开可用数据集的实验结果,CSSAM在两个数据集中分别在获得最高的SR@1/5/10,MRR和NDCG@50方面大大优于基本线。此外,进行消融研究是为了定量衡量CSSAM每个关键组成部分对代码搜索效率和有效性的影响,这为改进高级代码搜索解决方案提供了见解。
translated by 谷歌翻译
最近,基于图形神经网络(GNN)的文本分类模型引起了越来越多的关注。大多数这些模型采用类似的网络范例,即使用预训练节点嵌入初始化和两层图卷积。在这项工作中,我们提出了Textrgnn,一种改进的GNN结构,它引入了剩余连接以加深卷积网络深度。我们的结构可以获得更广泛的节点接收领域,有效地抑制节点特征的过平滑。此外,我们将概率语言模型集成到图形节点嵌入的初始化中,从而可以更好地提取非图形语义信息。实验结果表明,我们的模型是一般和高效的。无论是语料库级别还是文本级别,它都可以显着提高分类准确性,并在各种文本分类数据集中实现SOTA性能。
translated by 谷歌翻译
基于依赖性树的递归神经网络(Tree-RNN)在建模句子含义中普遍存在,因为它们有效地捕获非邻居词之间的语义关系。然而,识别具有相同单词和语法的语义不相似的句子对树-RNN仍然是一个挑战。该工作提出了使用依赖性解析中标识的语法关系类型对依赖树-RNN(DT-RNN)的改进。我们对语义相关性评分(SRS)的实验,并使用生病(涉及组建知识的句子)数据集显示令人鼓舞的结果的句子对中的文本征集(RTE)。该模型在DT-RNN模型上实现了RTE任务的分类精度的提高了2%。结果表明,Pearson的预期相似性分数和人类评级之间的Pearson和Spearman的相关措施高于标准DT-RNN。
translated by 谷歌翻译
在这项工作中,我们提出了一种神经方法,用于重建描述层次相互作用的生根树图,使用新颖的表示,我们将其称为最低的共同祖先世代(LCAG)矩阵。这种紧凑的配方等效于邻接矩阵,但是如果直接使用邻接矩阵,则可以单独从叶子中学习树的结构,而无需先前的假设。因此,采用LCAG启用了第一个端到端的可训练解决方案,该解决方案仅使用末端树叶直接学习不同树大小的层次结构。在高能量粒子物理学的情况下,粒子衰减形成了分层树结构,只能通过实验观察到最终产物,并且可能的树的大型组合空间使分析溶液变得很棘手。我们证明了LCAG用作使用变压器编码器和神经关系编码器编码器图神经网络的模拟粒子物理衰减结构的任务。采用这种方法,我们能够正确预测LCAG纯粹是从叶子特征中的LCAG,最大树深度为$ 8 $ in $ 92.5 \%\%的树木箱子,最高$ 6 $叶子(包括)和$ 59.7 \%\%\%\%的树木$在我们的模拟数据集中$ 10 $。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
电子健康记录(EHR)已经大量用于现代医疗保健系统,用于将患者的入场信息记录到医院。许多数据驱动方法采用EHR中的时间特征,用于预测患者的特定疾病,阅告期或诊断。然而,由于某些时间事件的监督培训中固有的标签,大多数现有的预测模型不能充分利用EHR数据。此外,对于现有的作品很难同时提供通用和个性化的解释性。为解决这些挑战,我们首先提出了一种具有信息流到分层结构的信息流的双曲线嵌入方法。我们将这些预先训练的表征纳入了图形神经网络以检测疾病并发症,并设计一种计算特定疾病和入学贡献的多级注意方法,从而提高个性化的可解释性。我们在自我监督的学习框架中提出了一个新的层次结构增强的历史预测代理任务,以充分利用EHR数据和利用医疗领域知识。我们开展一套全面的实验和案例研究,广泛使用的公开可用的EHR数据集以验证我们模型的有效性。结果表明我们的模型在预测任务和可解释能力方面的优势。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. For this purpose, they can be defined as many different types which suitably reflect the individual contexts of the represented problem. To address cutting-edge problems based on graph data, the research field of Graph Neural Networks (GNNs) has emerged. Despite the field's youth and the speed at which new models are developed, many recent surveys have been published to keep track of them. Nevertheless, it has not yet been gathered which GNN can process what kind of graph types. In this survey, we give a detailed overview of already existing GNNs and, unlike previous surveys, categorize them according to their ability to handle different graph types and properties. We consider GNNs operating on static and dynamic graphs of different structural constitutions, with or without node or edge attributes. Moreover, we distinguish between GNN models for discrete-time or continuous-time dynamic graphs and group the models according to their architecture. We find that there are still graph types that are not or only rarely covered by existing GNN models. We point out where models are missing and give potential reasons for their absence.
translated by 谷歌翻译
交通速度预测是许多有价值应用程序的关键,由于其各种影响因素,它也是一项具有挑战性的任务。最近的工作试图通过各种混合模型获得更多信息,从而提高了预测准确性。但是,这些方法的空间信息采集方案存在两级分化问题。建模很简单,但包含很少的空间信息,或者建模是完整的,但缺乏灵活性。为了基于确保灵活性引入更多空间信息,本文提出了IRNET(可转让的交叉点重建网络)。首先,本文将相交重建为与相同结构的虚拟交集,从而简化了道路网络的拓扑结构。然后,将空间信息细分为交叉信息和交通流向的序列信息,并通过各种模型获得时空特征。第三,一种自我发项机制用于融合时空特征以进行预测。在与基线的比较实验中,不仅预测效应,而且转移性能具有明显的优势。
translated by 谷歌翻译
图表神经网络(GNN)基于故障诊断(FD)近年来收到了越来越多的关注,因为来自来自多个应用域的数据可以有利地表示为图。实际上,与传统的FD方法相比,这种特殊的代表性表格导致了卓越的性能。在本次审查中,给出了GNN,对故障诊断领域的潜在应用以及未来观点的简单介绍。首先,通过专注于它们的数据表示,即时间序列,图像和图形,回顾基于神经网络的FD方法。其次,引入了GNN的基本原则和主要架构,注意了图形卷积网络,图注意网络,图形样本和聚合,图形自动编码器和空间 - 时间图卷积网络。第三,通过详细实验验证基于GNN的最相关的故障诊断方法,结论是基于GNN的方法可以实现良好的故障诊断性能。最后,提供了讨论和未来的挑战。
translated by 谷歌翻译
在逻辑合成阶段,需要将合成工具中的结构转换组合为优化序列,并在电路上作用以满足指定的电路区域和延迟。但是,逻辑合成优化序列是耗时的运行时间,并预测结果(QOR)与电路的合成优化序列的质量(QOR)可以帮助工程师更快地找到更好的优化序列。在这项工作中,我们提出了一种深度学习方法,以预测看不见的电路优化序列对的QOR。具体而言,结构转换通过嵌入方法和高级自然语言处理(NLP)技术(变压器)转换为向量,以提取优化序列的特征。此外,为了使模型的预测过程从电路到电路进行推广,电路的图表示为邻接矩阵和特征矩阵。图神经网络(GNN)用于提取电路的结构特征。对于此问题,使用了变压器和三个典型的GNN。此外,变压器和GNN被用作未见电路优化序列的QOR预测的联合学习政策。由变压器和GNN组合产生的方法基准测试。实验结果表明,变压器和图形的联合学习可获得最佳结果。预测结果的平均绝对误差(MAE)为0.412。
translated by 谷歌翻译
本文对过去二十年来对自然语言生成(NLG)的研究提供了全面的审查,特别是与数据到文本生成和文本到文本生成深度学习方法有关,以及NLG的新应用技术。该调查旨在(a)给出关于NLG核心任务的最新综合,以及该领域采用的建筑;(b)详细介绍各种NLG任务和数据集,并提请注意NLG评估中的挑战,专注于不同的评估方法及其关系;(c)强调一些未来的强调和相对近期的研究问题,因为NLG和其他人工智能领域的协同作用而增加,例如计算机视觉,文本和计算创造力。
translated by 谷歌翻译
这篇简短的评论旨在使读者熟悉与计划,调度和学习有关的最新作品。首先,我们研究最先进的计划算法。我们简要介绍神经网络。然后,我们更详细地探索图形神经网络,这是一种适合处理图形结构输入的神经网络的最新变体。我们简要描述了强化学习算法和迄今为止设计的一些方法的概念。接下来,我们研究了一些成功的方法,结合了用于路径规划的神经网络。最后,我们专注于不确定性的时间计划问题。
translated by 谷歌翻译
虽然某些工作尝试从UI屏幕截图中智能生成前端代码,但在Sketch中使用UI设计草稿可能更方便,这是一种流行的UI设计软件,因为我们可以直接访问多模式UI信息,例如层,位置,位置,位置,位置,位置,,,,位置,位置,位置,,位置,位置,位置,位置,,位置,位置,位置,位置,位置,,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置,位置类型大小和视觉图像。但是,如果所有这些层都参与了代码生成,则分散的层可能会降低代码质量,而不会合并为整个部分。在本文中,我们提出了一条管道,以自动合并碎片层。我们首先为UI草稿的图层树构造图表,并根据视觉特征和图形神经网络检测所有碎片层。然后,基于规则的算法旨在合并零碎的层。通过在新构建的数据集上的实验,我们的方法可以在UI设计草案中检索最碎片的层,并在检测任务中实现87%的准确性,并在简单且一般的情况下开发了后处理算法以聚集关联层。
translated by 谷歌翻译
流量预测在智能运输系统中交通控制和调度任务的实现中起着重要作用。随着数据源的多元化,合理地使用丰富的流量数据来对流量流中复杂的时空依赖性和非线性特征进行建模是智能运输系统的关键挑战。此外,清楚地评估从不同数据中提取的时空特征的重要性成为一个挑战。提出了双层 - 空间时间特征提取和评估(DL -STFEE)模型。 DL-STFEE的下层是时空特征提取层。流量数据中的空间和时间特征是通过多画图卷积和注意机制提取的,并生成了空间和时间特征的不同组合。 DL-STFEE的上层是时空特征评估层。通过高维自我注意力发项机制产生的注意力评分矩阵,空间特征组合被融合和评估,以便获得不同组合对预测效应的影响。在实际的流量数据集上进行了三组实验,以表明DL-STFEE可以有效地捕获时空特征并评估不同时空特征组合的重要性。
translated by 谷歌翻译