使用动态视觉传感器的基于事件的感测是在低功耗视觉应用中获得牵引力。尖峰神经网络与基于事件的数据的稀疏性质良好,并在低功率神经胸壁上进行部署。作为一个新生的领域,尖刺神经网络到潜在恶意的对抗性攻击的敏感性迄今为止受到重视很少。在这项工作中,我们展示了白盒对抗攻击算法如何适应基于事件的视觉数据的离散和稀疏性,以及尖刺神经网络的连续时间设置。我们在N-Mnist和IBM手势上测试我们的方法神经胸视觉数据集,并显示对逆势扰动来实现高成功率,通过注入相对少量的适当放置的事件。我们还首次验证这些扰动的有效性直接对神经族硬件。最后,我们讨论了所产生的扰动和可能的未来方向的性质。
translated by 谷歌翻译
深度学习的进步使得广泛的有希望的应用程序。然而,这些系统容易受到对抗机器学习(AML)攻击的影响;对他们的意见的离前事实制作的扰动可能导致他们错误分类。若干最先进的对抗性攻击已经证明他们可以可靠地欺骗分类器,使这些攻击成为一个重大威胁。对抗性攻击生成算法主要侧重于创建成功的例子,同时控制噪声幅度和分布,使检测更加困难。这些攻击的潜在假设是脱机产生的对抗噪声,使其执行时间是次要考虑因素。然而,最近,攻击者机会自由地产生对抗性示例的立即对抗攻击已经可能。本文介绍了一个新问题:我们如何在实时约束下产生对抗性噪音,以支持这种实时对抗攻击?了解这一问题提高了我们对这些攻击对实时系统构成的威胁的理解,并为未来防御提供安全评估基准。因此,我们首先进行对抗生成算法的运行时间分析。普遍攻击脱机产生一般攻击,没有在线开销,并且可以应用于任何输入;然而,由于其一般性,他们的成功率是有限的。相比之下,在特定输入上工作的在线算法是计算昂贵的,使它们不适合在时间约束下的操作。因此,我们提出房间,一种新型实时在线脱机攻击施工模型,其中离线组件用于预热在线算法,使得可以在时间限制下产生高度成功的攻击。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
神经形态的神经网络处理器,以记忆中的计算横杆阵列的形式,或以亚阈值模拟和混合信号ASIC的形式,有望在基于NN的ML任务的计算密度和能源效率方面具有巨大优势。但是,由于过程变化和内在的设备物理学,这些技术容易出现计算非理想性。通过将参数噪声引入部署模型中,这会降低部署到处理器的网络的任务性能。虽然可以为每个处理器校准每个设备或单独训练网络,但这些方法对于商业部署而言是昂贵且不切实际的。因此,由于网络体系结构和参数的结果,需要替代方法来训练与参数变化固有强大的网络。我们提出了一种新的对抗网络优化算法,该算法在训练过程中攻击网络参数,并在参数变化时促进推断期间的稳健性能。我们的方法引入了正规化术语,惩罚网络对权重扰动的敏感性。我们将与先前产生参数不敏感的方法进行比较,例如辍学,体重平滑和训练过程中引入参数噪声。我们表明,我们的方法产生的模型对目标参数变化更强大,并且对随机参数变化同样强大。与其他方法相比,我们的方法在减肥景观的平坦位置中发现了最小值,这强调了我们技术发现的网络对参数扰动不太敏感。我们的工作提供了一种将神经网络体系结构部署到遭受计算非理想性的推理设备的方法,而性能的损失最少。 ...
translated by 谷歌翻译
Spiking neural networks (SNNs) attract great attention due to their low power consumption, low latency, and biological plausibility. As they are widely deployed in neuromorphic devices for low-power brain-inspired computing, security issues become increasingly important. However, compared to deep neural networks (DNNs), SNNs currently lack specifically designed defense methods against adversarial attacks. Inspired by neural membrane potential oscillation, we propose a novel neural model that incorporates the bio-inspired oscillation mechanism to enhance the security of SNNs. Our experiments show that SNNs with neural oscillation neurons have better resistance to adversarial attacks than ordinary SNNs with LIF neurons on kinds of architectures and datasets. Furthermore, we propose a defense method that changes model's gradients by replacing the form of oscillation, which hides the original training gradients and confuses the attacker into using gradients of 'fake' neurons to generate invalid adversarial samples. Our experiments suggest that the proposed defense method can effectively resist both single-step and iterative attacks with comparable defense effectiveness and much less computational costs than adversarial training methods on DNNs. To the best of our knowledge, this is the first work that establishes adversarial defense through masking surrogate gradients on SNNs.
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
深度神经网络(DNN)易受侵略性的例子,仔细设计用于导致深度学习模型犯错误。已经广泛研究了2D图像和3D点云的对手示例,但基于事件的数据的研究有限。基于事件的数据可以是在高速运动之下的2D图像的替代方案,例如自主驾驶。然而,给定的对抗事件使当前的深度学习模型容易受到安全问题的影响。在这项工作中,我们生成了对手示例,然后首次培训基于事件的数据的强大模型。我们的算法转移原始事件的时间并生成其他对抗事件。额外的对抗事件是在两个阶段产生的。首先,将null事件添加到基于事件的数据以生成其他对抗事件。可以使用空事件的数量来控制扰动大小。其次,在基于梯度的攻击中将额外的对抗事件的位置和时间设置为误导DNN。我们的算法在N-CALTECH101数据集中实现了97.95 \%的攻击成功率。此外,与原始模型相比,对抗性训练模型提高了对抗事件数据的鲁棒性。
translated by 谷歌翻译
Video classification systems are vulnerable to adversarial attacks, which can create severe security problems in video verification. Current black-box attacks need a large number of queries to succeed, resulting in high computational overhead in the process of attack. On the other hand, attacks with restricted perturbations are ineffective against defenses such as denoising or adversarial training. In this paper, we focus on unrestricted perturbations and propose StyleFool, a black-box video adversarial attack via style transfer to fool the video classification system. StyleFool first utilizes color theme proximity to select the best style image, which helps avoid unnatural details in the stylized videos. Meanwhile, the target class confidence is additionally considered in targeted attacks to influence the output distribution of the classifier by moving the stylized video closer to or even across the decision boundary. A gradient-free method is then employed to further optimize the adversarial perturbations. We carry out extensive experiments to evaluate StyleFool on two standard datasets, UCF-101 and HMDB-51. The experimental results demonstrate that StyleFool outperforms the state-of-the-art adversarial attacks in terms of both the number of queries and the robustness against existing defenses. Moreover, 50% of the stylized videos in untargeted attacks do not need any query since they can already fool the video classification model. Furthermore, we evaluate the indistinguishability through a user study to show that the adversarial samples of StyleFool look imperceptible to human eyes, despite unrestricted perturbations.
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
现实世界的对抗例(通常以补丁形式)对安全关键计算机视觉任务中的深度学习模型(如在自动驾驶中的视觉感知)中使用深度学习模型构成严重威胁。本文涉及用不同类型的对抗性斑块攻击时,对语义分割模型的稳健性进行了广泛的评价,包括数字,模拟和物理。提出了一种新的损失功能,提高攻击者在诱导像素错误分类方面的能力。此外,提出了一种新的攻击策略,提高了在场景中放置补丁的转换方法的期望。最后,首先扩展用于检测对抗性补丁的最先进的方法以应对语义分割模型,然后改进以获得实时性能,并最终在现实世界场景中进行评估。实验结果表明,尽管具有数字和真实攻击的对抗效果,其影响通常在空间上限制在补丁周围的图像区域。这将打开关于实时语义分段模型的空间稳健性的进一步疑问。
translated by 谷歌翻译
深度神经网络容易受到来自对抗性投入的攻击,并且最近,特洛伊木马误解或劫持模型的决定。我们通过探索有界抗逆性示例空间和生成的对抗网络内的自然输入空间来揭示有界面的对抗性实例 - 通用自然主义侵害贴片的兴趣类 - 我们呼叫TNT。现在,一个对手可以用一个自然主义的补丁来手臂自己,不太恶意,身体上可实现,高效 - 实现高攻击成功率和普遍性。 TNT是普遍的,因为在场景中的TNT中捕获的任何输入图像都将:i)误导网络(未确定的攻击);或ii)迫使网络进行恶意决定(有针对性的攻击)。现在,有趣的是,一个对抗性补丁攻击者有可能发挥更大的控制水平 - 选择一个独立,自然的贴片的能力,与被限制为嘈杂的扰动的触发器 - 到目前为止只有可能与特洛伊木马攻击方法有可能干扰模型建设过程,以嵌入风险发现的后门;但是,仍然意识到在物理世界中部署的补丁。通过对大型视觉分类任务的广泛实验,想象成在其整个验证集50,000张图像中进行评估,我们展示了TNT的现实威胁和攻击的稳健性。我们展示了攻击的概括,以创建比现有最先进的方法实现更高攻击成功率的补丁。我们的结果表明,攻击对不同的视觉分类任务(CIFAR-10,GTSRB,PUBFIG)和多个最先进的深神经网络,如WieredEnet50,Inception-V3和VGG-16。
translated by 谷歌翻译
Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
translated by 谷歌翻译
由于缺乏对AI模型的安全性和鲁棒性的信任,近年来,深度学习模型(尤其是针对安全至关重要的系统)中的对抗性攻击正在越来越受到关注。然而,更原始的对抗性攻击可能是身体上不可行的,或者需要一些难以访问的资源,例如训练数据,这激发了斑块攻击的出现。在这项调查中,我们提供了全面的概述,以涵盖现有的对抗贴片攻击技术,旨在帮助感兴趣的研究人员迅速赶上该领域的进展。我们还讨论了针对对抗贴片的检测和防御措施的现有技术,旨在帮助社区更好地了解该领域及其在现实世界中的应用。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget. In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion ($\textit{R}$-$\textit{D}$) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression. We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to $\sim$ 2.4$\times$ while achieving over 90$\%$ attack success rate on a downstream classifier. Our user study further demonstrates the effect of RoVISQ attacks on users' QoE.
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译