In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax [10] and Angular Softmax [9] have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available 1 .
translated by 谷歌翻译
Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions such as center loss, large margin softmax loss, and angular softmax loss have been proposed. All these improved losses share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we propose a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as a cosine loss by L 2 normalizing both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by virtue of normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace. Extensive experimental evaluations are conducted on the most popular public-domain face recognition datasets such as MegaFace Challenge, Youtube Faces (YTF) and Labeled Face in the Wild (LFW). We achieve the state-of-the-art performance on these benchmarks, which confirms the effectiveness of our proposed approach.
translated by 谷歌翻译
This paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. However, few existing algorithms can effectively achieve this criterion. To this end, we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features. Geometrically, A-Softmax loss can be viewed as imposing discriminative constraints on a hypersphere manifold, which intrinsically matches the prior that faces also lie on a manifold. Moreover, the size of angular margin can be quantitatively adjusted by a parameter m. We further derive specific m to approximate the ideal feature criterion. Extensive analysis and experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and MegaFace Challenge show the superiority of A-Softmax loss in FR tasks. The code has also been made publicly available 1 .
translated by 谷歌翻译
学习歧视性面部特征在建立高性能面部识别模型方面发挥着重要作用。最近的最先进的面部识别解决方案,提出了一种在常用的分类损失函数,Softmax损失中纳入固定的惩罚率,通过最大限度地减少级别的变化来增加面部识别模型的辨别力并最大化级别的帧间变化。边缘惩罚Softmax损失,如arcFace和Cosface,假设可以使用固定的惩罚余量同样地学习不同身份之间的测地距。然而,这种学习目标对于具有不一致的间帧内变化的真实数据并不是现实的,这可能限制了面部识别模型的判别和概括性。在本文中,我们通过提出弹性罚款损失(弹性面)来放松固定的罚款边缘约束,这允许在推动阶级可分离性中灵活性。主要思想是利用从每个训练迭代中的正常分布中汲取的随机保证金值。这旨在提供决策边界机会,以提取和缩回,以允许灵活的类别可分离学习的空间。我们展示了在大量主流基准上使用相同的几何变换,展示了我们的弹性面损失和COSFace损失的优势。从更广泛的角度来看,我们的弹性面在九个主流基准中提出了最先进的面部识别性能。
translated by 谷歌翻译
基于软马克斯的损失函数及其变体(例如,界面,圆顶和弧形)可显着改善野生无约束场景中的面部识别性能。这些算法的一种常见实践是对嵌入特征和线性转换矩阵之间的乘法进行优化。但是,在大多数情况下,基于传统的设计经验给出了嵌入功能的尺寸,并且在给出固定尺寸时,使用该功能本身提高性能的研究较少。为了应对这一挑战,本文提出了一种称为subface的软关系近似方法,该方法采用了子空间功能来促进面部识别的性能。具体而言,我们在训练过程中动态选择每个批次中的非重叠子空间特征,然后使用子空间特征在基于软磁性的损失之间近似完整功能,因此,深层模型的可区分性可以显着增强,以增强面部识别。在基准数据集上进行的综合实验表明,我们的方法可以显着提高香草CNN基线的性能,这强烈证明了基于利润率的损失的子空间策略的有效性。
translated by 谷歌翻译
Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to maximize class separability. In this paper, we first introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear geometric interpretation but also significantly enhances the discriminative power. Since ArcFace is susceptible to the massive label noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the discriminative feature embedding as well as strengthen the generative face synthesis.
translated by 谷歌翻译
最先进的面部识别方法通常采用多分类管道,并采用基于SoftMax的损耗进行优化。虽然这些方法取得了巨大的成功,但基于Softmax的损失在开放式分类的角度下有其限制:训练阶段的多分类目标并没有严格匹配开放式分类测试的目标。在本文中,我们派生了一个名为全局边界Cosface的新损失(GB-Cosface)。我们的GB-COSface介绍了自适应全局边界,以确定两个面积是否属于相同的身份,使得优化目标与从开放集分类的角度与测试过程对齐。同时,由于损失配方来自于基于软MAX的损失,因此我们的GB-COSFace保留了基于软MAX的损耗的优异性能,并且证明了COSFace是拟议损失的特殊情况。我们在几何上分析并解释了所提出的GB-Cosface。多面识别基准测试的综合实验表明,所提出的GB-Cosface优于主流面部识别任务中的当前最先进的面部识别损失。与Cosface相比,我们的GB-Cosface在Tar @ Far = 1E-6,1E-5,1E-4上提高了1.58%,0.57%和0.28%的IJB-C基准。
translated by 谷歌翻译
Cross-entropy loss together with softmax is arguably one of the most common used supervision components in convolutional neural networks (CNNs). Despite its simplicity, popularity and excellent performance, the component does not explicitly encourage discriminative learning of features. In this paper, we propose a generalized large-margin softmax (L-Softmax) loss which explicitly encourages intra-class compactness and inter-class separability between learned features. Moreover, L-Softmax not only can adjust the desired margin but also can avoid overfitting. We also show that the L-Softmax loss can be optimized by typical stochastic gradient descent. Extensive experiments on four benchmark datasets demonstrate that the deeply-learned features with L-softmax loss become more discriminative, hence significantly boosting the performance on a variety of visual classification and verification tasks.
translated by 谷歌翻译
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity s p and minimize the between-class similarity s n . We find a majority of loss functions, including the triplet loss and the softmax cross-entropy loss, embed s n and s p into similarity pairs and seek to reduce (s n − s p ). Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning paradigms, i.e., learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing (s n − s p ). Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several finegrained image retrieval datasets, the achieved performance is on par with the state of the art.
translated by 谷歌翻译
卷积神经网络(CNNS)在监督环境中的影响提供了巨大的性能。从CNN中学到的表示,在高度球形歧管上运作,导致了面部识别,面部识别和其他受监督任务的富有魅力结果。具有广泛的激活功能,具有间直觉,在欧几里德空间中执行优于Softmax。这项研究的主要动力是提供见解。首先,暗示立体图投影以将数据从欧几里德空间($ \ mathbb {r} ^ {n} $)转换为高度球形歧管($ \ mathbb {s} ^ {n} $)来分析角度边缘损失的性能。其次,从理论上证明了使用立体投影在极度上构建的决策边界义务授权了神经网络的学习。实验已经证明,在现有的最先进的角度边缘目标功能上应用立体摄影改善了标准图像分类数据集的性能(CIFAR-10,100)。此外,我们在疟疾薄血涂片图像上运行了我们的实验,导致有效的结果。该代码可公开可用:https://github.com/barulalithb/stereo -angular-margin。
translated by 谷歌翻译
The classification loss functions used in deep neural network classifiers can be grouped into two categories based on maximizing the margin in either Euclidean or angular spaces. Euclidean distances between sample vectors are used during classification for the methods maximizing the margin in Euclidean spaces whereas the Cosine similarity distance is used during the testing stage for the methods maximizing margin in the angular spaces. This paper introduces a novel classification loss that maximizes the margin in both the Euclidean and angular spaces at the same time. This way, the Euclidean and Cosine distances will produce similar and consistent results and complement each other, which will in turn improve the accuracies. The proposed loss function enforces the samples of classes to cluster around the centers that represent them. The centers approximating classes are chosen from the boundary of a hypersphere, and the pairwise distances between class centers are always equivalent. This restriction corresponds to choosing centers from the vertices of a regular simplex. There is not any hyperparameter that must be set by the user in the proposed loss function, therefore the use of the proposed method is extremely easy for classical classification problems. Moreover, since the class samples are compactly clustered around their corresponding means, the proposed classifier is also very suitable for open set recognition problems where test samples can come from the unknown classes that are not seen in the training phase. Experimental studies show that the proposed method achieves the state-of-the-art accuracies on open set recognition despite its simplicity.
translated by 谷歌翻译
面部图像的质量显着影响底层识别算法的性能。面部图像质量评估(FIQA)估计捕获的图像的效用在实现可靠和准确的识别性能方面。在这项工作中,我们提出了一种新的学习范式,可以在培训过程中学习内部网络观察。基于此,我们所提出的CR-FiQA使用该范例来通过预测其相对分类性来估计样品的面部图像质量。基于关于其类中心和最近的负类中心的角度空间中的训练样本特征表示来测量该分类性。我们通过实验说明了面部图像质量与样本相对分类性之间的相关性。由于此类属性仅为培训数据集可观察到,因此我们建议从培训数据集中学习此属性,并利用它来预测看不见样品的质量措施。该培训同时执行,同时通过用于面部识别模型训练的角度裕度罚款的软墨损失来优化类中心。通过对八个基准和四个面部识别模型的广泛评估实验,我们展示了我们提出的CR-FiQA在最先进(SOTA)FIQ算法上的优越性。
translated by 谷歌翻译
Recent years witnessed the breakthrough of face recognition with deep convolutional neural networks. Dozens of papers in the field of FR are published every year. Some of them were applied in the industrial community and played an important role in human life such as device unlock, mobile payment, and so on. This paper provides an introduction to face recognition, including its history, pipeline, algorithms based on conventional manually designed features or deep learning, mainstream training, evaluation datasets, and related applications. We have analyzed and compared state-of-the-art works as many as possible, and also carefully designed a set of experiments to find the effect of backbone size and data distribution. This survey is a material of the tutorial named The Practical Face Recognition Technology in the Industrial World in the FG2023.
translated by 谷歌翻译
由于CNNS中的快速进步,因此,面部识别的性能已饱和,例如LFW,CFP-FP和AgedB,因为CNNS的快速进步。然而,由于没有这种数据集,尚未研究在FR模型上对FR模型进行各种细粒度条件的影响。本文在使用K-Face的不同条件和损耗功能方面分析了它们的效果,最近引入了具有细粒度的FR DataSet。我们提出了一种新的丢失功能,混合表面,结合了分类和度量损失。在各种基准数据集上实验证明了在有效性和稳健性方面的混合表面的优越性。
translated by 谷歌翻译
现代基于深度学习的系统的性能极大地取决于输入对象的质量。例如,对于模糊或损坏的输入,面部识别质量将较低。但是,在更复杂的情况下,很难预测输入质量对所得准确性的影响。我们提出了一种深度度量学习的方法,该方法允许直接估算不确定性,几乎没有额外的计算成本。开发的\ textit {scaleface}算法使用可训练的比例值,以修改嵌入式空间中的相似性。这些依赖于输入的量表值代表了对识别结果的信心的度量,从而允许估计不确定性。我们提供了有关面部识别任务的全面实验,这些实验表明与其他不确定性感知的面部识别方法相比,比例表面的表现出色。我们还将结果扩展到了文本到图像检索的任务,表明所提出的方法以显着的利润击败了竞争对手。
translated by 谷歌翻译
Person re-identification is a challenging task because of the high intra-class variance induced by the unrestricted nuisance factors of variations such as pose, illumination, viewpoint, background, and sensor noise. Recent approaches postulate that powerful architectures have the capacity to learn feature representations invariant to nuisance factors, by training them with losses that minimize intra-class variance and maximize inter-class separation, without modeling nuisance factors explicitly. The dominant approaches use either a discriminative loss with margin, like the softmax loss with the additive angular margin, or a metric learning loss, like the triplet loss with batch hard mining of triplets. Since the softmax imposes feature normalization, it limits the gradient flow supervising the feature embedding. We address this by joining the losses and leveraging the triplet loss as a proxy for the missing gradients. We further improve invariance to nuisance factors by adding the discriminative task of predicting attributes. Our extensive evaluation highlights that when only a holistic representation is learned, we consistently outperform the state-of-the-art on the three most challenging datasets. Such representations are easier to deploy in practical systems. Finally, we found that joining the losses removes the requirement for having a margin in the softmax loss while increasing performance.
translated by 谷歌翻译
Although significant progress has been made in face recognition, demographic bias still exists in face recognition systems. For instance, it usually happens that the face recognition performance for a certain demographic group is lower than the others. In this paper, we propose MixFairFace framework to improve the fairness in face recognition models. First of all, we argue that the commonly used attribute-based fairness metric is not appropriate for face recognition. A face recognition system can only be considered fair while every person has a close performance. Hence, we propose a new evaluation protocol to fairly evaluate the fairness performance of different approaches. Different from previous approaches that require sensitive attribute labels such as race and gender for reducing the demographic bias, we aim at addressing the identity bias in face representation, i.e., the performance inconsistency between different identities, without the need for sensitive attribute labels. To this end, we propose MixFair Adapter to determine and reduce the identity bias of training samples. Our extensive experiments demonstrate that our MixFairFace approach achieves state-of-the-art fairness performance on all benchmark datasets.
translated by 谷歌翻译
Metric learning aims to learn distances from the data, which enhances the performance of similarity-based algorithms. An author style detection task is a metric learning problem, where learning style features with small intra-class variations and larger inter-class differences is of great importance to achieve better performance. Recently, metric learning based on softmax loss has been used successfully for style detection. While softmax loss can produce separable representations, its discriminative power is relatively poor. In this work, we propose NBC-Softmax, a contrastive loss based clustering technique for softmax loss, which is more intuitive and able to achieve superior performance. Our technique meets the criterion for larger number of samples, thus achieving block contrastiveness, which is proven to outperform pair-wise losses. It uses mini-batch sampling effectively and is scalable. Experiments on 4 darkweb social forums, with NBCSAuthor that uses the proposed NBC-Softmax for author and sybil detection, shows that our negative block contrastive approach constantly outperforms state-of-the-art methods using the same network architecture. Our code is publicly available at : https://github.com/gayanku/NBC-Softmax
translated by 谷歌翻译
数据清洁,体系结构和损失功能设计是导致高性能面部识别的重要因素。以前,研究社区试图提高每个单个方面的性能,但未能在共同搜索所有三个方面的最佳设计时提出统一的解决方案。在本文中,我们首次确定这些方面彼此紧密结合。实际上,优化各个方面的设计实际上极大地限制了性能并偏向算法设计。具体而言,我们发现最佳模型体系结构或损耗函数与数据清洁紧密相结合。为了消除单一研究研究的偏见并提供对面部识别模型设计的总体理解,我们首先仔细设计了每个方面的搜索空间,然后引入了全面的搜索方法,以共同搜索最佳数据清洁,架构和损失功能设计。在我们的框架中,我们通过使用基于创新的增强学习方法来使拟议的全面搜索尽可能灵活。对百万级面部识别基准的广泛实验证明了我们新设计的搜索空间在每个方面和全面搜索的有效性。我们的表现要优于为每个研究轨道开发的专家算法。更重要的是,我们分析了我们搜索的最佳设计与单个因素的独立设计之间的差异。我们指出,强大的模型倾向于通过更困难的培训数据集和损失功能进行优化。我们的实证研究可以为未来的研究提供指导,以实现更健壮的面部识别系统。
translated by 谷歌翻译
3D可线模型(3DMMS)是面部形状和外观的生成模型。然而,传统3DMMS的形状参数满足多变量高斯分布,而嵌入式嵌入满足过边距分布,并且这种冲突使得面部重建模型同时保持忠诚度和形状一致性的挑战。为了解决这个问题,我们提出了一种用于单眼脸部重建的新型3DMM的球体面部模型(SFM),这可以保持既有忠诚度和身份一致性。我们的SFM的核心是可以用于重建3D面形状的基矩阵,并且通过采用在第一和第二阶段中使用3D和2D训练数据的两级训练方法来学习基本矩阵。为了解决分发不匹配,我们设计一种新的损失,使形状参数具有超球的潜在空间。广泛的实验表明,SFM具有高表示能力和形状参数空间的聚类性能。此外,它产生富翼面形状,并且形状在单眼性重建中的挑战条件下是一致的。
translated by 谷歌翻译