我们报告了激进的量化策略,这些策略极大地加速了复发性神经网络传感器(RNN-T)的推理。我们使用4位整数表示进行权重和激活,并应用量化意识训练(QAT)来重新训练完整模型(声学编码器和语言模型)并实现近乎ISO的准确性。我们表明,根据网络本地属性量身定制的自定义量化方案对于在限制QAT的计算开销的同时,至关重要。密度比语言模型融合已显示出在RNN-T工作负载上的准确性提高,但严重增加了推理的计算成本。我们表明,我们的量化策略可以使用大型宽度宽度进行假设搜索,同时实现与流媒体兼容的运行时间,并且与完整的Precision模型相比,我们可以实现与流相兼容的运行时间和7.6 $ \ times $的完整模型压缩比。通过硬件仿真,我们估计端到端量化的RNN-T(包括LM Fusion)的3.4 $ \ times $从fp16到INT4,导致实时因子(RTF)为0.06。在NIST HUB5 2000,HUB5 2001和RT-03测试集中,我们保留了与LM Fusion相关的大部分收益,将平均WER提高了$ 1.5%。
translated by 谷歌翻译
Recurrent neural networks (RNN) are the backbone of many text and speech applications. These architectures are typically made up of several computationally complex components such as; non-linear activation functions, normalization, bi-directional dependence and attention. In order to maintain good accuracy, these components are frequently run using full-precision floating-point computation, making them slow, inefficient and difficult to deploy on edge devices. In addition, the complex nature of these operations makes them challenging to quantize using standard quantization methods without a significant performance drop. We present a quantization-aware training method for obtaining a highly accurate integer-only recurrent neural network (iRNN). Our approach supports layer normalization, attention, and an adaptive piecewise linear (PWL) approximation of activation functions, to serve a wide range of state-of-the-art RNNs. The proposed method enables RNN-based language models to run on edge devices with $2\times$ improvement in runtime, and $4\times$ reduction in model size while maintaining similar accuracy as its full-precision counterpart.
translated by 谷歌翻译
语言模型(LMS)显着提高端到端模型(E2E)模型在训练过程中很少见的单词的识别准确性,当时在浅融合或重新恢复设置中。在这项工作中,我们介绍了LMS在判别培训框架中学习混合自动回旋传感器(HAT)模型的研究,以减轻有关使用LMS的训练与推理差距。对于浅融合设置,我们在假设生成和损失计算过程中都使用LMS,而LM感知的MWER训练模型可实现10 \%的相对改进,比用标准MWER在语音搜索测试集中培训的模型相对改进,其中包含稀有单词。对于重新设置,我们学会了一个小型神经模块,以数据依赖性方式产生串联的融合权重。该模型与常规MWER训练的模型相同,但无需清除融合重量。
translated by 谷歌翻译
深入学习模型的压缩在将这些模型部署到边缘设备方面具有根本重要性。在压缩期间,在压缩期间结合硬件模型和应用限制可以最大限度地提高优势,但使其专为一种情况而设计。因此,压缩需要自动化。搜索最佳压缩方法参数被认为是一个优化问题。本文介绍了一种多目标硬件感知量化(MohaQ)方法,其将硬件效率和推理误差视为混合精度量化的目标。该方法通过依赖于两个步骤,在很大的搜索空间中评估候选解决方案。首先,应用训练后量化以进行快速解决方案评估。其次,我们提出了一个名为“基于信标的搜索”的搜索技术,仅在搜索空间中重新选出所选解决方案,并将其用作信标以了解刷新对其他解决方案的影响。为了评估优化潜力,我们使用Timit DataSet选择语音识别模型。该模型基于简单的复发单元(SRU),由于其相当大的加速在其他复发单元上。我们应用了我们在两个平台上运行的方法:SILAGO和BETFUSION。实验评估表明,SRU通过训练后量化可以压缩高达8倍,而误差的任何显着增加,误差只有1.5个百分点增加。在Silago上,唯一的搜索发现解决方案分别实现了最大可能加速和节能的80 \%和64 \%,错误的误差增加了0.5个百分点。在BETFUSION上,对于小SRAM尺寸的约束,基于信标的搜索将推断搜索的错误增益减少4个百分点,并且与BitFusion基线相比,可能的达到的加速度增加到47倍。
translated by 谷歌翻译
与变压器架构相关的自我监督学习的最新进展使自然语言处理(NLP)表现出极低的困惑。如此强大的模型需要越来越多的模型大小,因此需要大量的计算和内存足迹。在本文中,我们为大规模生成语言模型提出了一个有效的推理框架。作为减少模型大小的关键,我们通过不均匀的量化方法量化权重。然后,我们提出的称为NUQMM的量化矩阵乘法加速了,该内核可以在压缩比和准确性之间进行广泛的权衡。我们提出的NUQMM不仅减少了每个GPU的延迟,还减少了大LMS的全部推断,因为高压缩比(通过低位量化)减轻了最小所需的GPU数量。我们证明NUQMM可以将GPT-3(175b)模型的推理速度加速约14.4倍,并将能源消耗降低93%。
translated by 谷歌翻译
梁搜索是端到端模型的主要ASR解码算法,生成树结构化假设。但是,最近的研究表明,通过假设合并进行解码可以通过可比或更好的性能实现更有效的搜索。但是,复发网络中的完整上下文与假设合并不兼容。我们建议在RNN传感器的预测网络中使用矢量定量的长期记忆单元(VQ-LSTM)。通过与ASR网络共同培训离散表示形式,可以积极合并假设以生成晶格。我们在总机语料库上进行的实验表明,提出的VQ RNN传感器改善了具有常规预测网络的换能器的ASR性能,同时还产生了具有相同光束尺寸的Oracle Word错误率(WER)的密集晶格。其他语言模型撤退实验还证明了拟议的晶格生成方案的有效性。
translated by 谷歌翻译
在端到端RNN-TransDucer(RNN-T)中使用外部语言模型(ELM)使用仅文本数据进行语音识别是具有挑战性的。最近,已经开发了一类方法,例如密度比(DR)和内部语言模型估计(ILME),表现优于经典的浅融合(SF)方法。这些方法背后的基本思想是,RNN-T后验应首先先于隐式学习的内部语言模型(ILM),以便整合ELM。尽管最近的研究表明RNN-T仅学习一些低阶语言模型信息,但DR方法使用具有完整背景的训练有素的神经语言模型,这可能不适合估计ILM并恶化整合性能。基于DR方法,我们通过用低阶弱语言模型代替估计来提出低阶密度比方法(LODR)。在英语librispeech&tedlium-2和中国wenetspeech和aishell-1数据集的内域和跨域情景上进行了广泛的经验实验。结果表明,在大多数测试中,LODR在所有任务中始终胜过所有任务,而通常接近ILME,并且比DR更好。
translated by 谷歌翻译
作为语音识别的最流行的序列建模方法之一,RNN-Transducer通过越来越复杂的神经网络模型,以增长的规模和增加训练时代的增长,实现了不断发展的性能。尽管强大的计算资源似乎是培训卓越模型的先决条件,但我们试图通过仔细设计更有效的培训管道来克服它。在这项工作中,我们提出了一条高效的三阶段渐进式训练管道,以在合理的短时间内从头开始建立具有非常有限的计算资源的高效神经传感器模型。每个阶段的有效性在LibrisPeech和Convebobly Corpora上都经过实验验证。拟议的管道能够在短短2-3周内以单个GPU接近最先进的性能来训练换能器模型。我们最好的构型传感器在Librispeech测试中获得4.1%的速度,仅使用35个训练时代。
translated by 谷歌翻译
减少潜伏期和模型大小一直是实时自动语音识别(ASR)应用程序方案的重要研究问题。沿着这个方向,模型量化已成为压缩神经网络并降低计算成本的越来越流行的方法。大多数现有的实用ASR系统都采用训练后8位量化。为了在不引入额外的性能回归的情况下达到更高的压缩率,在这项研究中,我们建议开发具有本机量化培训的4位ASR模型,该模型利用天然整数操作有效地优化培训和推理。我们对基于最新构象体的ASR模型进行了两个实验,以评估我们提出的量化技术。首先,我们探讨了不同精度对重量和激活量化对LibrisPeech数据集的影响,并获得了与Float32模型相比,获得了7.7倍尺寸的无损4位构象异构体模型。此后,我们首次研究并揭示了在使用大型数据集训练的实用ASR系统上的4位量化的可行性,并产生了具有4位混合重量和8位权重的无损构象体ASR模型与FLOAT32模型相比,尺寸减小了5倍。
translated by 谷歌翻译
长期记忆(LSTM)经常性网络经常用于涉及时间序列数据(例如语音识别)的任务。与以前的LSTM加速器相比,它可以利用空间重量稀疏性或时间激活稀疏性,本文提出了一种称为“ Spartus”的新加速器,该加速器可利用时空的稀疏性来实现超低潜伏期推断。空间稀疏性是使用新的圆柱平衡的靶向辍学(CBTD)结构化修剪法诱导的,从而生成平衡工作负载的结构化稀疏重量矩阵。在Spartus硬件上运行的修剪网络可实现高达96%和94%的重量稀疏度,而Timit和LibrisPeech数据集的准确性损失微不足道。为了在LSTM中诱导时间稀疏性,我们将先前的Deltagru方法扩展到Deltalstm方法。将时空的稀疏与CBTD和Deltalstm相结合,可以节省重量存储器访问和相关的算术操作。 Spartus体系结构是可扩展的,并且在大小FPGA上实现时支持实时在线语音识别。 1024个神经元的单个deltalstm层的Spartus每样本延迟平均1 US。使用TIMIT数据集利用我们的测试LSTM网络上的时空稀疏性导致Spartus在其理论硬件性能上达到46倍的加速,以实现9.4 TOP/S有效批次1吞吐量和1.1 TOP/S/W PARTIC效率。
translated by 谷歌翻译
Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference -sometimes prohibitively so in the case of very large data sets and large models. Several authors have also charged that NMT systems lack robustness, particularly when input sentences contain rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using residual connections as well as attention connections from the decoder network to the encoder. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units ("wordpieces") for both input and output. This method provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. To directly optimize the translation BLEU scores, we consider refining the models by using reinforcement learning, but we found that the improvement in the BLEU scores did not reflect in the human evaluation. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system.
translated by 谷歌翻译
由于神经网络变得更加强大,因此在现实世界中部署它们的愿望是一个上升的愿望;然而,神经网络的功率和准确性主要是由于它们的深度和复杂性,使得它们难以部署,尤其是在资源受限的设备中。最近出现了神经网络量化,以满足这种需求通过降低网络的精度来降低神经网络的大小和复杂性。具有较小和更简单的网络,可以在目标硬件的约束中运行神经网络。本文调查了在过去十年中开发的许多神经网络量化技术。基于该调查和神经网络量化技术的比较,我们提出了该地区的未来研究方向。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
我们为250k参数feedforward,流媒体,无状态关键字发现模型的所有组件的所有组件提出了一种新型的2阶段次级量化量化训练算法。对于第一阶段,我们使用tanh(。)在致密层的重量上使用非线性转换来调整最近提出的量化技术。在第二阶段,我们在网络的其余部分上使用线性量化方法,包括其他参数(偏见,增益,batchnorm),输入和激活。我们进行大规模实验,对26,000小时的去识别生产,远场和近场音频数据进行培训(对4,000小时的数据进行评估)。我们在两个嵌入式芯片组设置中组织结果:a)具有商品臂霓虹灯指令套件和8位容器,我们使用sub 8位权重(4、5、8位)和8位的精度,CPU和内存结果 - 网络其余部分的量化; b)具有现成的神经网络加速器,用于一系列重量位宽度(1和5位),同时提出准确性结果,我们预测记忆利用率的减少。在两种配置中,我们的结果都表明,提出的算法可以实现:a)以虚假拒绝率(FRR)的虚假检测率(FDR)在检测错误权衡(DET)曲线上具有完整浮点模型的操作点(det)曲线的奇偶校验。 ; b)计算和内存的显着降低,最大提高了CPU消耗量的3倍,并且记忆消耗改善了4倍以上。
translated by 谷歌翻译
Connectionist时间分类(CTC)的模型很有吸引力,因为它们在自动语音识别(ASR)中的快速推断。语言模型(LM)集成方法(例如浅融合和重新恢复)可以通过利用文本语料库的知识来提高基于CTC的ASR的识别准确性。但是,它们大大减慢了CTC的推论。在这项研究中,我们建议提炼基于CTC的ASR的BERT知识,从而扩展了我们先前针对基于注意的ASR的研究。基于CTC的ASR在训练过程中学习了BERT的知识,并且在测试过程中不使用BERT,从而维持CTC的快速推断。与基于注意力的模型不同,基于CTC的模型做出了框架级预测,因此它们需要与BERT的令牌级预测进行蒸馏。我们建议通过计算最合理的CTC路径来获得比对。对自发日语(CSJ)和TED-LIUM2语料库的实验评估表明,我们的方法改善了基于CTC的ASR的性能,而无需推理速度成本。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译
我们提出了一种针对8位神经网络加速器的新型8位量化感知训练(S8BQAT)方案。我们的方法灵感来自Lloyd-Max压缩理论,其实际适应性适应训练期间可行的计算开销。通过量化质心源自32位基线,我们使用多区域绝对余弦(MRACOS)正规器增强训练损失,该培训将重量汇总到其最近的质心,有效地充当伪压缩机。此外,引入了定期调用的硬压缩机,以通过模拟运行时模型重量量化来提高收敛速率。我们将S8BQAT应用于语音识别任务,使用经常性神经网络TransDucer(RNN-T)体系结构。使用S8BQAT,我们能够将模型参数大小增加,以将单词错误率相对降低4-16%,同时仍将延迟提高5%。
translated by 谷歌翻译
经常性神经网络语言模型(RNNLMS)的高存储器消耗和计算成本限制了它们对资源受限设备的更广泛的应用。近年来,能够产生极低比特压缩的神经网络量化技术,例如二值化的RNNLMS正在获得增加的研究兴趣。直接培训量化神经网络是困难的。通过将量化的RNNLMS培训作为优化问题的制定,使用乘法器(ADMM)的交替方向方法从头开始训练量化RNNLMS的新方法。使用捆绑的低比特量化表,此方法还可以灵活地调整压缩率和模型性能之间的权衡。两项任务的实验:Penn TreeBank(PTB)和交换机(SWBD)建议所提出的ADMM量化在全精密基线RNNLMS上实现了高达31次的模型尺寸压缩因子。还获得了在基线二值化RNNLM量化上模型训练中的5倍的更快收敛性。索引项:语言模型,经常性神经网络,量化,乘法器的交替方向方法。
translated by 谷歌翻译
端到端(E2E)自动语音识别模型如经常性神经网络传感器(RNN-T)正成为流媒体级语音助手的流行选择。虽然E2E模型在学习培训数据的学习代表时非常有效,但他们对看不见的域的准确性仍然是一个具有挑战性的问题。此外,这些模型需要配对的音频和文本培训数据,计算得昂贵,并且难以适应对话语音的快速不断发展的性质。在这项工作中,我们探讨了使用利用文本数据源的似然比来调整RNN-T模型的上下文偏置方法。我们表明这种方法在提高稀有单词识别方面是有效的,并导致在多个OUT的N-BEST ORACLE WER(n = 8)中为10%的相对提高10%,在多个外部域数据集没有常规数据集没有任何劣化。我们还表明,通过适应第二遍辅助模型的互补偏置适应性提供了加性WER改进。
translated by 谷歌翻译
经常性的神经网络传感器(RNN-T)目标在建立当今最好的自动语音识别(ASR)系统中发挥着重要作用。与连接员时间分类(CTC)目标类似,RNN-T损失使用特定规则来定义生成一组对准以形成用于全汇训练的格子。但是,如果这些规则是最佳的,则在很大程度上未知,并且会导致最佳ASR结果。在这项工作中,我们介绍了一种新的传感器目标函数,它概括了RNN-T丢失来接受标签的图形表示,从而提供灵活和有效的框架来操纵训练格子,例如用于限制对齐或研究不同的转换规则。我们证明,与标准RNN-T相比,具有CTC样格子的基于传感器的ASR实现了更好的结果,同时确保了严格的单调对齐,这将允许更好地优化解码过程。例如,所提出的CTC样换能器系统对于测试 - LibrisPeech的其他条件,实现了5.9%的字误差率,相对于基于等效的RNN-T系统的提高,对应于4.8%。
translated by 谷歌翻译