我们引入了一种正式的元语言,用于概率编程,能够同时表达程序和它们嵌入的类型系统。我们在这里渴望允许AGI学习相关知识(程序/证明),还可以学习适当的推理方式(逻辑/类型系统)。我们借鉴了立方体类型理论的框架和依赖的打字元素来形式化我们的方法。在此过程中,我们表明,元语言中的特定构造可以通过分配(意味着路径等效)与它们相关的类型系统相关。这允许我们的方法提供一种方便的方式,以推导各种类型系统的合成典型语义。特别是,我们得出了纯型系统(PTS)和概率依赖类型系统(PDTS)的两次仿真。我们进一步讨论了PTS与非井结合的集合理论的关系,并通过在受保护的立方体类型理论检查器中实施分配证明的方法来证明我们的方法的可行性。
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
我们在答案集编程(ASP)中,提供了全面的可变实例化或接地的理论基础。在ASP的建模语言的语义上构建,我们在(固定点)运营商方面介绍了接地算法的正式表征。专用良好的运营商扮演了一个主要作用,其相关模型提供了划定接地结果以及随机简化的语义指导。我们地址呈现出一种竞技级逻辑程序,该程序包含递归聚合,从而达到现有ASP建模语言的范围。这伴随着一个普通算法框架,详细说明递归聚集体的接地。给定的算法基本上对应于ASP接地器Gringo中使用的算法。
translated by 谷歌翻译
形状约束语言(SHACL)是通过验证图表上的某些形状来验证RDF数据的最新W3C推荐语言。先前的工作主要集中在验证问题上,并且仅针对SHACL的简化版本研究了对设计和优化目的至关重要的可满足性和遏制的标准决策问题。此外,SHACL规范不能定义递归定义的约束的语义,这导致文献中提出了几种替代性递归语义。尚未研究这些不同语义与重要决策问题之间的相互作用。在本文中,我们通过向新的一阶语言(称为SCL)的翻译提供了对SHACL的不同特征的全面研究,该语言精确地捕获了SHACL的语义。我们还提出了MSCL,这是SCL的二阶扩展,它使我们能够在单个形式的逻辑框架中定义SHACL的主要递归语义。在这种语言中,我们还提供了对过滤器约束的有效处理,这些滤镜经常在相关文献中被忽略。使用此逻辑,我们为不同的SHACL片段的可满足性和遏制决策问题提供了(联合)可决定性和复杂性结果的详细图。值得注意的是,我们证明这两个问题对于完整的语言都是不可避免的,但是即使面对递归,我们也提供了有趣的功能的可决定性组合。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
在概念学习,数据库查询的反向工程,生成参考表达式以及知识图中的实体比较之类的应用中,找到以标记数据项形式分开的逻辑公式,该公式分开以标记数据项形式给出的正面和负面示例。在本文中,我们研究了存在本体论的数据的分离公式的存在。对于本体语言和分离语言,我们都专注于一阶逻辑及其以下重要片段:描述逻辑$ \ Mathcal {alci} $,受保护的片段,两变量的片段和受保护的否定片段。为了分离,我们还考虑(工会)连接性查询。我们考虑了几种可分离性,这些可分离性在负面示例的治疗中有所不同,以及他们是否承认使用其他辅助符号来实现分离。我们的主要结果是(所有变体)可分离性,不同语言的分离能力的比较以及确定可分离性的计算复杂性的研究。
translated by 谷歌翻译
从建模和复杂性角度来看,跨不同范围领域的统计关系表示的行为已成为研究的焦点领域。 2018年,Jaeger和Schulte将分布家族作为关键特性提出了预测性,以确保边际推断与域大小无关。但是,Jaeger和Schulte认为该域仅以其大小为特征。这项贡献将投影率的概念从域大小索引的分布家族到从数据库中进行扩展数据的函数。这使得投影率可用于采用结构化输入的大量应用程序。我们将投影性分配家庭的已知吸引人属性转移到新环境中。此外,我们证明了对无限域的投影率与分布之间的对应关系,我们用来将其统一和推广到无限域中的统计关系表示。最后,我们使用扩展的投影率概念来定义进一步的加强,我们称之为$ \ sigma $ - 标题性,并允许在保留投影率的同时以不同的模式使用相同的表示。
translated by 谷歌翻译
对表示形式的研究对于任何形式的交流都是至关重要的,我们有效利用它们的能力至关重要。本文介绍了一种新颖的理论 - 代表性系统理论 - 旨在从三个核心角度从三个核心角度进行抽象地编码各种表示:语法,综合及其属性。通过介绍建筑空间的概念,我们能够在一个统一的范式下编码这些核心组件中的每个核心组件。使用我们的代表性系统理论,有可能在结构上将一个系统中的表示形式转换为另一个系统的表示形式。我们结构转化技术的固有方面是根据表示的属性(例如它们的相对认知有效性或结构复杂性)的代表选择。提供一般结构转化技术的主要理论障碍是缺乏终止算法。代表系统理论允许在没有终止算法的情况下衍生部分变换。由于代表性系统理论提供了一种通用编码代表系统的通用方法,因此消除了进一步的关键障碍:需要设计特定于系统的结构转换算法,这是当不同系统采用不同的形式化方法时所必需的。因此,代表性系统理论是第一个提供统一方法来编码表示形式,通过结构转换支持表示形式的第一个通用框架,并具有广泛的实用应用。
translated by 谷歌翻译
我们提出了一种使用绑架过程,在给定的答案集编程(ASP)规则集(ASP)规则集方面生成可能的查询证明,该过程仅根据输入规则自动构建了陈腐的空间。给定一组(可能是空的)用户提供的事实,我们的方法会渗透到需要查询的任何其他事实,然后输出这些额外的事实,而无需用户需要明确指定所有占有无误的空间。我们还提出了一种方法,以生成与查询的理由图相对应的一组定向边缘。此外,通过不同形式的隐式术语替换,我们的方法可以考虑用户提供的事实并适当修改绑架解决方案。过去的绑架工作主要基于目标定向方法。但是,这些方法可能导致并非真正声明的求解器。关于实现绑架的绑架者,例如Clingo ASP求解器,做出的工作要少得多。我们描述了可以直接在Clingo中运行的新型ASP程序,以产生绑架解决方案和定向边缘集,而无需修改基础求解引擎。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
域特异性启发式方法是有效解决组合问题的必不可少的技术。当前将特定于域的启发式方法与答案集编程(ASP)集成的方法在处理基于部分分配的非单调指定的启发式方法时,这是不令人满意的。例如,在挑选尚未放入垃圾箱中的物品时,这种启发式方法经常发生。因此,我们介绍了ASP中域特异性启发式方法声明性规范的新颖语法和语义。我们的方法支持启发式陈述,依赖于解决过程中所维持的部分任务,这是不可能的。我们在Alpha中提供了一种实现,该实现使Alpha成为第一个支持声明指定的域特定启发式方法的懒惰的ASP系统。使用两个实际的示例域来证明我们的提议的好处。此外,我们使用我们的方法用A*实施知情},该搜索首次在ASP中解决。 A*应用于两个进一步的搜索问题。实验证实,结合懒惰的ASP解决方案和我们的新型启发式方法对于解决工业大小的问题至关重要。
translated by 谷歌翻译
我们回答以下问题,哪些结合性查询以多种方式上的许多正和负面示例以及如何有效地构建此类示例的特征。结果,我们为一类连接的查询获得了一种新的有效的精确学习算法。我们的贡献的核心是两种新的多项式时间算法,用于在有限结构的同态晶格中构建前沿。我们还讨论了模式映射和描述逻辑概念的独特特征性和可学习性的影响。
translated by 谷歌翻译
我们介绍了对形状约束语言(Shacl)的介绍和审查,用于验证RDF数据的W3C推荐语言。SHACL文档描述了RDF节点上的一组约束,如果其节点满足这些约束,则图表对于文档是有效的。我们重新审视语言的基本概念,其构建和组件及其互动。我们审查了用于研究这种语言和不同语义的不同正式框架。我们检查许多相关问题,从遏制和满足性与Shacl与推理规则的相互作用,并展示语言的不同发动机对不同的问题有用。我们还涵盖了Shacl的实际方面,讨论其实现和通过的情况,为从业者和理论者提供了一个很有用的全面审查。
translated by 谷歌翻译
在结构证明理论中,设计和研究大量微积分使得很难单独和作为整个系统的一部分获得有关每个规则的直觉。我们介绍了两种新颖的工具,以使用图理论和自动机理论的方法来帮助计算。第一个工具是证明树自动机(PTA):树自动机哪种语言是微积分的派生语言。第二个工具是称为证明树图(PTG)的演算的图形表示。在此定向超图中,顶点是术语(例如序列),而Hyperarcs是规则。我们探索PTA和PTG的属性以及它们如何相互关系。我们表明,我们可以将PTA分解为从微积分到传统树自动机的部分地图。我们在改进系统理论中制定了这一说法。最后,我们将框架与证明网和弦图进行比较。
translated by 谷歌翻译
General mathematical reasoning is computationally undecidable, but humans routinely solve new problems. Moreover, discoveries developed over centuries are taught to subsequent generations quickly. What structure enables this, and how might that inform automated mathematical reasoning? We posit that central to both puzzles is the structure of procedural abstractions underlying mathematics. We explore this idea in a case study on 5 sections of beginning algebra on the Khan Academy platform. To define a computational foundation, we introduce Peano, a theorem-proving environment where the set of valid actions at any point is finite. We use Peano to formalize introductory algebra problems and axioms, obtaining well-defined search problems. We observe existing reinforcement learning methods for symbolic reasoning to be insufficient to solve harder problems. Adding the ability to induce reusable abstractions ("tactics") from its own solutions allows an agent to make steady progress, solving all problems. Furthermore, these abstractions induce an order to the problems, seen at random during training. The recovered order has significant agreement with the expert-designed Khan Academy curriculum, and second-generation agents trained on the recovered curriculum learn significantly faster. These results illustrate the synergistic role of abstractions and curricula in the cultural transmission of mathematics.
translated by 谷歌翻译
由于现实世界编程语言语法的复杂性,因此从原始源代码中的学习程序语义是具有挑战性的,并且由于难以重建长距离关系信息在程序中使用标识符暗示表示的长距离关系信息。在解决第一点时,我们将约束的Horn条款(CHC)视为程序验证问题的标准表示,提供了一种简单而编程的语言独立语法。对于第二个挑战,我们探索CHC的图表表示,并提出了一个新的关系超图神经网络(R-HYGNN)体系结构来学习程序功能。我们介绍了CHC的两个不同的图表。一个称为约束图(CG),并通过将符号及其关系分别翻译成键入节点和二进制边缘,并强调CHC的句法信息,并将其构造为抽象语法树的约束。第二个称为控制和数据流超图(CDHG),并通过表示通过三元超过的控制和数据流来强调CHC的语义信息。然后,我们提出了一种新的GNN体系结构R-HYGNN,扩展了关系图卷积网络,以处理超图。为了评估R-HYGNN从程序中提取语义信息的能力,我们使用R-HYGNN在两个图表上训练模型,以及使用CHC-COMP 2021的基准作为培训数据,在五个具有越来越多的代理任务上进行了越来越多的困难。最困难的代理任务要求该模型预测反例中的条款的出现,这是CHC的满意度。 CDHG在此任务中达到90.59%的精度。此外,R-HYGNN对由290多个条款组成的图表之一具有完美的预测。总体而言,我们的实验表明,R-HYGNN可以捕获复杂的程序功能,以实现指导验证问题。
translated by 谷歌翻译
复杂的推理问题是使用逻辑规则最清楚,很容易指定的,但是需要具有汇总的递归规则,例如计数和总和用于实际应用。不幸的是,此类规则的含义是一个重大挑战,导致许多不同的语义分歧。本文介绍了与汇总的递归规则的统一语义,扩展了统一的基础语义和约束语义,以否定为递归规则。关键思想是支持对不同语义基础的不同假设的简单表达,并正交使用其简单的含义来解释聚合操作。我们介绍了语义的形式定义,证明了语义的重要特性,并与先前的语义相比。特别是,我们提出了对聚集的有效推断,该推论为我们从文献中研究的所有示例提供了精确的答案。我们还将语义应用于各种挑战的示例,并表明我们的语义很简单,并且在所有情况下都与所需的结果相匹配。最后,我们描述了最具挑战性的示例实验,当他们可以计算正确的答案时,表现出与知名系统相比出现的出色性能。
translated by 谷歌翻译
已经开发了概率模型检查,用于验证具有随机和非季度行为的验证系统。鉴于概率系统,概率模型检查器占用属性并检查该系统中的属性是否保持。因此,概率模型检查提供严谨的保证。然而,到目前为止,概率模型检查专注于所谓的模型,其中一个状态由符号表示。另一方面,通常需要在规划和强化学习中进行关系抽象。各种框架处理关系域,例如条带规划和关系马尔可夫决策过程。使用命题模型检查关系设置需要一个地接地模型,这导致了众所周知的状态爆炸问题和难以承承性。我们提出了PCTL-Rebel,一种用于验证关系MDP的PCTL属性的提升模型检查方法。它延长了基于关系模型的强化学习技术的反叛者,朝着关系PCTL模型检查。 PCTL-REBEL被提升,这意味着而不是接地,模型利用对称在关系层面上整体的一组对象。从理论上讲,我们表明PCTL模型检查对于具有可能无限域的关系MDP可判定,条件是该状态具有有界大小。实际上,我们提供算法和提升关系模型检查的实现,并且我们表明提升方法提高了模型检查方法的可扩展性。
translated by 谷歌翻译