复杂知识库问题回答是过去十年的一个流行的研究领域。最近的公共数据集导致这一领域的令人鼓舞的结果,但主要涉及英语,只涉及少数问题类型和关系,在更现实的环境和英语以外的语言中妨碍研究。此外,很少有最先进的KBQA模型在Wikidata上培训,是最受欢迎的真实知识库之一。我们提出了CLC-Quad,这是Wikidata的第一个大规模复杂的中文语义解析数据集,以解决这些挑战。我们与数据集一起介绍了一个文本到SPARQL基线模型,可以有效地应答多种类型的复杂问题,例如事实上的问题,双重意图问题,布尔问题和计数问题,以及Wikidata作为背景知识。我们终于分析了SOTA KBQA模型在此数据集中的表现,并确定了中国KBQA面临的挑战。
translated by 谷歌翻译
从自然语言问题中构建查询图是在知识图上回答复杂问题(复杂KGQA)的重要一步。通常,如果正确构建其查询图,可以正确回答问题,然后通过针对kg发出查询图来检索正确的答案。因此,本文着重于自然语言问题的查询图生成。查询图生成的现有方法忽略了问题的语义结构,从而导致大量破坏预测准确性的嘈杂的查询图候选者。在本文中,我们从kgqa中的常见问题定义了六个语义结构,并开发了一种新颖的结构,以预测问题的语义结构。通过这样做,我们可以首先过滤嘈杂的候选查询图,然后使用基于BERT的排名模型对剩余的候选人进行排名。与最先进的艺术相比,对两个流行的基准metaqa和WebQuestionsSP(WSP)进行了广泛的实验,证明了我们方法的有效性。
translated by 谷歌翻译
Complex knowledge base question answering can be achieved by converting questions into sequences of predefined actions. However, there is a significant semantic and structural gap between natural language and action sequences, which makes this conversion difficult. In this paper, we introduce an alignment-enhanced complex question answering framework, called ALCQA, which mitigates this gap through question-to-action alignment and question-to-question alignment. We train a question rewriting model to align the question and each action, and utilize a pretrained language model to implicitly align the question and KG artifacts. Moreover, considering that similar questions correspond to similar action sequences, we retrieve top-k similar question-answer pairs at the inference stage through question-to-question alignment and propose a novel reward-guided action sequence selection strategy to select from candidate action sequences. We conduct experiments on CQA and WQSP datasets, and the results show that our approach outperforms state-of-the-art methods and obtains a 9.88\% improvements in the F1 metric on CQA dataset. Our source code is available at https://github.com/TTTTTTTTy/ALCQA.
translated by 谷歌翻译
知识库问题的最现有的方法接听(KBQA)关注特定的基础知识库,原因是该方法的固有假设,或者因为在不同的知识库上评估它需要非琐碎的变化。然而,许多流行知识库在其潜在模式中的相似性份额可以利用,以便于跨知识库的概括。为了实现这一概念化,我们基于2级架构介绍了一个KBQA框架,该架构明确地将语义解析与知识库交互分开,促进了数据集和知识图中的转移学习。我们表明,具有不同潜在知识库的数据集预先灌注可以提供显着的性能增益并降低样本复杂性。我们的方法可实现LC-Quad(DBPedia),WEDQSP(FreeBase),简单问话(Wikidata)和MetaQA(WikiMovies-KG)的可比性或最先进的性能。
translated by 谷歌翻译
查询图形构建旨在通过知识图构建正确的可执行SPARQL以应答自然语言问题。虽然最近的方法通过基于NN的查询图排名进行了良好,但更复杂的问题带来了三个新的挑战:复杂的SPARQL语法,排名的巨大搜索空间,以及当地歧义的嘈杂查询图。本文处理了这些挑战。最初,我们将常见的复杂sparql语法视为包括顶点和边缘的子图,并提出了一个新的统一查询图语法来调整它们。随后,我们提出了一种新的两阶段方法来构建查询图。在第一阶段,通过简单的策略作为候选实例收集了顶级的k $相关的实例(实体,关系等)。在第二阶段,图形生成模型执行分层生成。它首先概述了一个图形结构,其顶点和边缘是空插槽,然后将适当的实例填充到槽中,从而完成查询图。我们的方法将整个查询图的无法忍受的搜索空间分解为经济实惠的操作子空间,同时利用全局结构信息来消除局部歧义。实验结果表明,我们的方法大大提高了最坚定的kgqa基准,在复杂问题上具有出色的性能。
translated by 谷歌翻译
多跳跃知识基础问题答案(KBQA)旨在在知识库中找到答案实体,这是问题中提到的主题实体的几个啤酒花。现有基于检索的方法首先从问题中生成指令,然后使用它们来指导知识图上的多跳推理。由于指令是在整个推理过程中固定的,并且在指令生成中未考虑知识图,因此一旦错误地预测中间实体,模型就无法修改其错误。为了解决这个问题,我们提出了Kbiger(知识库迭代指令生成和推理),这是一种新颖有效的方法,可以在推理图的帮助下动态生成指令。我们没有在推理之前生成所有指令,而是考虑(k-1)推理图来构建k-th指令。通过这种方式,模型可以检查图表的预测并生成新指令,以修改中间实体的不正确预测。我们对两个多跳KBQA基准测试进行实验,并胜过现有方法,并成为新州。进一步的实验表明,我们的方法确实检测到中间实体的不正确预测,并具有修改此类错误的能力。
translated by 谷歌翻译
访问公共知识库中可用的大量信息可能对那些不熟悉的SPARQL查询语言的用户可能很复杂。SPARQL中自然语言提出的问题的自动翻译有可能克服这个问题。基于神经机翻译的现有系统非常有效,但在识别出识别出训练集的词汇(OOV)的单词中很容易失败。查询大型本体的时,这是一个严重的问题。在本文中,我们将命名实体链接,命名实体识别和神经计算机翻译相结合,以将自然语言问题的自动转换为SPARQL查询。我们凭经验证明,我们的方法比在纪念碑,QALD-9和LC-QUAD V1上运行实验,我们的方法比现有方法更有效,并且对OOV单词进行了更有效的,并且是现有的方法,这些方法是众所周知的DBPedia的相关数据集。
translated by 谷歌翻译
Biomedical knowledge graphs (KG) are heterogenous networks consisting of biological entities as nodes and relations between them as edges. These entities and relations are extracted from millions of research papers and unified in a single resource. The goal of biomedical multi-hop question-answering over knowledge graph (KGQA) is to help biologist and scientist to get valuable insights by asking questions in natural language. Relevant answers can be found by first understanding the question and then querying the KG for right set of nodes and relationships to arrive at an answer. To model the question, language models such as RoBERTa and BioBERT are used to understand context from natural language question. One of the challenges in KGQA is missing links in the KG. Knowledge graph embeddings (KGE) help to overcome this problem by encoding nodes and edges in a dense and more efficient way. In this paper, we use a publicly available KG called Hetionet which is an integrative network of biomedical knowledge assembled from 29 different databases of genes, compounds, diseases, and more. We have enriched this KG dataset by creating a multi-hop biomedical question-answering dataset in natural language for testing the biomedical multi-hop question-answering system and this dataset will be made available to the research community. The major contribution of this research is an integrated system that combines language models with KG embeddings to give highly relevant answers to free-form questions asked by biologists in an intuitive interface. Biomedical multi-hop question-answering system is tested on this data and results are highly encouraging.
translated by 谷歌翻译
知识图表问题基于信息检索旨在通过从大型知识图表中检索答案来回答问题来回答(即,kgqa)。大多数现有方法首先粗略地检索可能包含候选答案的知识子图(KSG),然后搜索子图中的确切答案。然而,粗略检索的KSG可以包含数千个候选节点,因为查询中涉及的知识图通常是大规模的。为了解决这个问题,我们首先建议通过新的子图分区算法将检索到的ksg分区为几个较小的子ksgs,然后呈现一个图形增强学习,以便测量模型以从中选择排名的子ksgs。我们所提出的模型结合了新的子图匹配网络,以捕获问题和子图中的全局交互以及增强的双边多视角匹配模型,以捕获局部交互。最后,我们分别在全KSG和排名级分ksg上应用答案选择模型,以验证我们提出的图形增强学习的效果。多个基准数据集的实验结果表明了我们方法的有效性。
translated by 谷歌翻译
知识图表(kg)作为从大型自然语言文本语料库中举行蒸馏信息的伟大工具。查询知识图表的自然语言问题对于这些信息的人类消费至关重要。通常通过将自然语言查询转换为结构化查询,然后在kg上触发结构化查询来解决此问题。在文献中的知识图中直接回答模型很少。查询转换模型和直接模型都需要与知识图表的域有关的特定培训数据。在这项工作中,我们将通过知识图表的自然语言问题转换为前提假设对的推理问题。使用培训的深度学习模型进行转换后的代理推理问题,我们为原始自然语言查询问题提供了解决方案。我们的方法在MetaQA数据集中实现了超过90%的准确性,击败现有的最先进。我们还提出了一种推论称为分层复发路径编码器(HRPE)的模型。可以微调推断模型以跨越跨越培训数据的域使用。我们的方法不需要大型域特定的培训数据来查询来自不同域的新知识图表。
translated by 谷歌翻译
知识库问题应答(KBQA)旨在在外部知识库的帮助下回答自然语言问题。核心思想是找到内部知识与知识库的已知三元组之间的内部知识之间的联系。 KBQA任务管道包含几个步骤,包括实体识别,关系提取和实体链接。这种管道方法意味着任何过程中的错误将不可避免地传播到最终预测。为了解决上述问题,本文提出了一种具有预培训语言模型(PLM)和知识图(KG)的语料库生成 - 检索方法(CGRM)。首先,基于MT5模型,我们设计了两个新的预训练任务:基于段落的知识屏蔽语言建模和问题,以获取知识增强型T5(KT5)模型。其次,在用一系列启发式规则预处理知识图的预处理之后,KT5模型基于处理的三元组生成自然语言QA对。最后,我们通过检索合成数据集直接解决QA。我们在NLPCC-ICCPOL 2016 KBQA数据集上测试我们的方法,结果表明,我们的框架提高了KBQA的性能,直接向前的方法与最先进的方法竞争。
translated by 谷歌翻译
随着未来以数据为中心的决策,对数据库的无缝访问至关重要。关于创建有效的文本到SQL(Text2SQL)模型以访问数据库的数据有广泛的研究。使用自然语言是可以通过有效访问数据库(尤其是对于非技术用户)来弥合数据和结果之间差距的最佳接口之一。它将打开门,并在精通技术技能或不太熟练的查询语言的用户中引起极大的兴趣。即使提出或研究了许多基于深度学习的算法,在现实工作场景中使用自然语言来解决数据查询问题仍然非常具有挑战性。原因是在不同的研究中使用不同的数据集,这带来了其局限性和假设。同时,我们确实缺乏对这些提议的模型及其对其训练的特定数据集的局限性的彻底理解。在本文中,我们试图介绍过去几年研究的24种神经网络模型的整体概述,包括其涉及卷积神经网络,经常性神经网络,指针网络,强化学习,生成模型等的架构。我们还概述11个数据集,这些数据集被广泛用于训练Text2SQL技术的模型。我们还讨论了无缝数据查询中文本2SQL技术的未来应用可能性。
translated by 谷歌翻译
在这项工作中,我们专注于从自然语言问题中生成SPARQL查询的任务,然后可以在知识图(kgs)上执行。我们假设已经提供了黄金实体和关系,其余的任务是与Sparql词汇一起以正确的顺序排列它们,并输入令牌以产生正确的SPARQL查询。到目前为止,尚未对此任务进行深入探索,因此我们使用BERT嵌入的BART,T5和PGN(指针发电机网络)进行了深入探讨,因此,请在PLM ERA中寻找此任务的新基础,在dbpedia和wikidata kgs上。我们表明T5需要特殊的输入令牌化,但是在LC-Quad 1.0和LC-Quad 2.0数据集上产生最先进的性能,并且从以前的工作中优于特定于任务的模型。此外,这些方法可以为问题进行语义解析,以使输入的一部分需要复制到输出查询,从而在KG语义解析中启用新的范式。
translated by 谷歌翻译
在知识库(KBQA)上回答的问题对语义解析研究提出了一个独特的挑战,这是由于两个相互交织的挑战:大大的搜索空间和模式链接中的歧义。基于常规排名的KBQA模型依靠候选枚举步骤来减少搜索空间,在预测复杂查询方面具有灵活性而挣扎并具有不切实际的运行时间。在本文中,我们提出了Arcaneqa,这是一个基于新的一代模型,它既解决统一框架中的大型搜索空间和架构将挑战联系起来的挑战,以及两种相互增强的成分:动态程序诱导,以解决大型搜索空间和动态上下文化的编码,以用于模式链接。多个流行KBQA数据集的实验结果证明了Arcaneqa在有效性和效率方面的竞争性能高。
translated by 谷歌翻译
在过去的几年中,临床笔记中的问题回答(QA)引起了很多关注。临床领域中现有的机器阅读理解方法只能处理有关单个临床文本的问题,并且无法检索有关多个患者及其临床笔记的信息。为了处理更复杂的问题,我们旨在从临床注释中创建知识库,以将不同的患者和临床笔记联系起来,并进行知识基础问题答案(KBQA)。根据N2C2数据集中可用的专家注释,我们首先创建了ClinicalKBQA数据集,其中包括大约9K QA对,并使用300多个问题模板涵盖了有关七个医学主题的问题。然后,我们研究了KBQA的一种基于注意力的方面推理(AAR)方法,并分析了答案的不同方面(例如,实体,类型,路径和上下文)对预测的影响。由于设计精良的编码器和注意力机制,AAR方法可实现更好的性能。从我们的实验中,我们发现这两个方面,类型和路径都使模型能够识别满足一般条件的答案,并产生较低的精度和更高的回忆。另一方面,各个方面,实体和上下文通过特定于节点的信息限制答案,并导致更高的精度和较低的回忆。
translated by 谷歌翻译
Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fillin-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-theart pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https: //github.com/facebookresearch/LAMA.
translated by 谷歌翻译
使用诸如BERT,ELMO和FLAIR等模型建模上下文信息的成立具有显着改善了文字的表示学习。它还给出了几乎每个NLP任务机器翻译,文本摘要和命名实体识别的Sota结果,以命名为少。在这项工作中,除了使用这些主导的上下文感知的表示之外,我们还提出了一种用于命名实体识别(NER)的知识意识表示学习(KARL)网络。我们讨论了利用现有方法在纳入世界知识方面的挑战,并展示了如何利用我们所提出的方法来克服这些挑战。 KARL基于变压器编码器,该变压器编码器利用表示为事实三元组的大知识库,将它们转换为图形上下文,并提取驻留在内部的基本实体信息以生成用于特征增强的上下文化三联表示。实验结果表明,使用卡尔的增强可以大大提升我们的内部系统的性能,并在三个公共网络数据集中的文献中的现有方法,即Conll 2003,Conll ++和Ontonotes V5实现了比文献中现有方法的显着更好的结果。我们还观察到更好的概括和应用于从Karl上看不见的实体的真实环境。
translated by 谷歌翻译
过去十年互联网上可用的信息和信息量增加。该数字化导致自动应答系统需要从冗余和过渡知识源中提取富有成效的信息。这些系统旨在利用自然语言理解(NLU)从此巨型知识源到用户查询中最突出的答案,从而取决于问题答案(QA)字段。问题答案涉及但不限于用户问题映射的步骤,以获取相关查询,检索相关信息,从检索到的信息等找到最佳合适的答案等。当前对深度学习模型的当前改进估计所有这些任务的令人信服的性能改进。在本综述工作中,根据问题的类型,答案类型,证据答案来源和建模方法进行分析QA场的研究方向。此细节随后是自动问题生成,相似性检测和语言的低资源可用性等领域的开放挑战。最后,提出了对可用数据集和评估措施的调查。
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译
我们提出了一种基于转换的系统来转换摘要意义代表(AMR)进入SPARQL,了解知识库问题应答(KBQA)。这允许将抽象问题的一部分委派给强训练的语义解析器,同时使用少量配对数据学习转换。我们从最近的工作相关的AMR和SPARQL构造,而不是应用一套规则,我们教导BART模型选择性地使用这些关系。此外,在最近的语义解析作品之后,我们避免在BART的注意机制中进行了显式编码AMR,而是编码解析器状态。结果模型很简单,为其决策提供支持文本,并且优于LC-Quad(F1 53.4)中的基于AMR的KBQA中的最新进展,在QAL(F1 30.8)中匹配,同时利用相同的归纳偏差。
translated by 谷歌翻译