A self-supervised adaptive low-light video enhancement (SALVE) method is proposed in this work. SALVE first conducts an effective Retinex-based low-light image enhancement on a few key frames of an input low-light video. Next, it learns mappings from the low- to enhanced-light frames via Ridge regression. Finally, it uses these mappings to enhance the remaining frames in the input video. SALVE is a hybrid method that combines components from a traditional Retinex-based image enhancement method and a learning-based method. The former component leads to a robust solution which is easily adaptive to new real-world environments. The latter component offers a fast, computationally inexpensive and temporally consistent solution. We conduct extensive experiments to show the superior performance of SALVE. Our user study shows that 87% of participants prefer SALVE over prior work.
translated by 谷歌翻译
这项工作提出了一种基于连续的子空间学习(SSL)的生成建模方法。与文献中的大多数生成模型不同,我们的方法不利用神经网络来分析基本源分布和合成图像。所得的方法称为渐进属性引导可扩展的鲁棒图像生成(PAGER)模型,在数学透明度,渐进式内容生成,较低的训练时间,较少的训练样本以及对条件图像生成的扩展性方面具有优势。 Pager由三个模块组成:核心生成器,分辨率增强器和质量助推器。核心发电机了解低分辨率图像的分布并执行无条件的图像生成。分辨率增强子通过条件产生增加图像分辨率。最后,质量助推器为生成的图像增加了更细节。进行了有关MNIST,时尚摄影和Celeba数据集的广泛实验,以证明Pager的生成性能。
translated by 谷歌翻译
With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting users' opinions and sentiments regarding the conflict. The tweets' positive and negative sentiments are analyzed using a BERT-based model, and the time series associated with the frequency of positive and negative tweets for various countries is calculated. Then, we propose a method based on the neighborhood average for modeling and clustering the time series of countries. The clustering results provide valuable insight into public opinion regarding this conflict. Among other things, we can mention the similar thoughts of users from the United States, Canada, the United Kingdom, and most Western European countries versus the shared views of Eastern European, Scandinavian, Asian, and South American nations toward the conflict.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
National Association of Securities Dealers Automated Quotations(NASDAQ) is an American stock exchange based. It is one of the most valuable stock economic indices in the world and is located in New York City \cite{pagano2008quality}. The volatility of the stock market and the influence of economic indicators such as crude oil, gold, and the dollar in the stock market, and NASDAQ shares are also affected and have a volatile and chaotic nature \cite{firouzjaee2022lstm}.In this article, we have examined the effect of oil, dollar, gold, and the volatility of the stock market in the economic market, and then we have also examined the effect of these indicators on NASDAQ stocks. Then we started to analyze the impact of the feedback on the past prices of NASDAQ stocks and its impact on the current price. Using PCA and Linear Regression algorithm, we have designed an optimal dynamic learning experience for modeling these stocks. The results obtained from the quantitative analysis are consistent with the results of the qualitative analysis of economic studies, and the modeling done with the optimal dynamic experience of machine learning justifies the current price of NASDAQ shares.
translated by 谷歌翻译
部署AI驱动的系统需要支持有效人类互动的值得信赖的模型,超出了原始预测准确性。概念瓶颈模型通过在类似人类的概念的中间级别调节分类任务来促进可信度。这使得人类干预措施可以纠正错误预测的概念以改善模型的性能。但是,现有的概念瓶颈模型无法在高任务准确性,基于概念的强大解释和对概念的有效干预措施之间找到最佳的妥协,尤其是在稀缺完整和准确的概念主管的现实情况下。为了解决这个问题,我们提出了概念嵌入模型,这是一种新型的概念瓶颈模型,它通过学习可解释的高维概念表示形式而超出了当前的准确性-VS解关性权衡。我们的实验表明,嵌入模型(1)达到更好或竞争性的任务准确性W.R.T. W.R.T.没有概念的标准神经模型,(2)提供概念表示,以捕获有意义的语义,包括其地面真相标签,(3)支持测试时间概念干预措施,其在测试准确性中的影响超过了标准概念瓶颈模型,以及(4)规模对于稀缺的完整概念监督的现实条件。
translated by 谷歌翻译
对比度学习是视觉表示学习最成功的方法之一,可以通过在学习的表示上共同执行聚类来进一步提高其性能。但是,现有的联合聚类和对比度学习的方法在长尾数据分布上表现不佳,因为多数班级压倒了少数群体的损失,从而阻止了学习有意义的表示形式。由此激励,我们通过适应偏见的对比损失,以避免群集中的少数群体类别的不平衡数据集来开发一种新颖的联合聚类和对比度学习框架。我们表明,我们提出的修改后的对比损失和分歧聚类损失可改善多个数据集和学习任务的性能。源代码可从https://anonymon.4open.science/r/ssl-debiased-clustering获得
translated by 谷歌翻译
为了为视频产生适当的标题,推理需要确定相关的概念并注意它们之间的空间关系以及剪辑中的时间发展。我们的端到端编码器视频字幕框架结合了两个基于变压器的体系结构,这是一种用于单个关节时空视频分析的改编变压器,以及用于高级文本生成的基于自我注意力的解码器。此外,我们引入了一种自适应框架选择方案,以减少所需的传入帧数,同时在训练两个变压器时保持相关内容。此外,我们通过汇总每个样本的所有基础真理标题来估计与视频字幕相关的语义概念。我们的方法在MSVD以及大规模的MSR-VTT和VATEX基准数据集上实现了最新的结果,并考虑了多个自然语言产生(NLG)指标。对多样性得分的其他评估突出了我们生成的标题结构的表现力和多样性。
translated by 谷歌翻译
本文着重于根据数据包输送比率(PDR)(即,在远程广阔的区域(Lorawan)中通过End Devices(EDS)发送)的数据包数量来改善资源分配算法。设置传输参数会显着影响PDR。我们采用强化学习(RL)提出了一种资源分配算法,该算法使ED可以以分布式方式配置其传输参数。我们将资源分配问题建模为多臂强盗(MAB),然后通过提出一种名为Mix-MAB的两相算法来解决它,该算法由探索和开发(EXP3)和连续消除(SE)组成,该算法由指数重量组成(SE)算法。我们通过仿真结果评估混合MAB性能,并将其与其他现有方法进行比较。数值结果表明,就收敛时间和PDR而言,所提出的解决方案的性能优于现有方案。
translated by 谷歌翻译
医疗人工智能(AI)的最新进展已提供了可以达到临床专家水平绩效的系统。但是,当在与训练环境不同的临床环境中评估时,这种系统往往会证明次优的“分布式”性能。一种常见的缓解策略是使用特定地点数据为每个临床环境开发单独的系统[1]。但是,这很快变得不切实际,因为医疗数据很耗时,可以注释且昂贵[2]。因此,“数据有效概括”的问题给医学AI开发带来了持续的困难。尽管代表性学习的进展显示出希望,但并未对其好处进行严格的研究,特别是用于分布的设置。为了应对这些挑战,我们提出了RESEDIS,这是一种统一的代表学习策略,以提高医学成像AI的鲁棒性和数据效率。雷雷迪斯使用大规模监督转移学习与自我监督学习的通用组合,几乎不需要特定于任务的自定义。我们研究各种医学成像任务,并使用回顾性数据模拟三个现实的应用程序场景。 RESEDIS表现出明显改善的分布性能,而在强有力的基线上,诊断准确性相对相对提高了11.5%。更重要的是,我们的策略会导致对医学成像AI的强大数据有效的概括,并使用跨任务的1%至33%的重新培训数据匹配强有力的监督基线。这些结果表明,Repedis可以显着加速医学成像AI开发的生命周期,从而为医学成像AI提供了重要的一步,以产生广泛的影响。
translated by 谷歌翻译