部署AI驱动的系统需要支持有效人类互动的值得信赖的模型,超出了原始预测准确性。概念瓶颈模型通过在类似人类的概念的中间级别调节分类任务来促进可信度。这使得人类干预措施可以纠正错误预测的概念以改善模型的性能。但是,现有的概念瓶颈模型无法在高任务准确性,基于概念的强大解释和对概念的有效干预措施之间找到最佳的妥协,尤其是在稀缺完整和准确的概念主管的现实情况下。为了解决这个问题,我们提出了概念嵌入模型,这是一种新型的概念瓶颈模型,它通过学习可解释的高维概念表示形式而超出了当前的准确性-VS解关性权衡。我们的实验表明,嵌入模型(1)达到更好或竞争性的任务准确性W.R.T. W.R.T.没有概念的标准神经模型,(2)提供概念表示,以捕获有意义的语义,包括其地面真相标签,(3)支持测试时间概念干预措施,其在测试准确性中的影响超过了标准概念瓶颈模型,以及(4)规模对于稀缺的完整概念监督的现实条件。
translated by 谷歌翻译
图形神经网络的不透明推理导致缺乏人类的信任。现有的图形网络解释器试图通过提供事后解释来解决此问题,但是,它们无法使模型本身更容易解释。为了填补这一空白,我们介绍了概念编码器模块,这是图形网络的第一个可区分概念 - 发现方法。所提出的方法使图形网络可以通过首先发现图形概念,然后使用这些来解决任务来解释。我们的结果表明,这种方法允许图形网络:(i)达到模型准确性与它们的等效香草版本相当,(ii)发现有意义的概念,以实现高概念完整性和纯度得分,(iii)提供基于高质量的概念逻辑。对其预测的解释,以及(iv)在测试时支持有效的干预措施:这些可以提高人类的信任并显着提高模型绩效。
translated by 谷歌翻译
自解释深层模型旨在在训练期间隐含地学习基于潜在的概念的解释,从而消除了任何HOC后期解释生成技术的要求。在这项工作中,我们提出了一种这样的模型,该模型将解释生成模块附加在任何基本网络的顶部,并共同列举显示出高预测性能的整个模块,并在概念方面产生有意义的解释。与基线方法相比,我们的培训策略适用于无监督的概念学习,与基线方法相比具有更大的参数空间要求。我们拟议的模式还规定了利用自我监督对概念来提取更好的解释。然而,通过完整的概念监督,与最近提出的基于概念的可解释模型相比,我们实现了最佳预测性能。我们通过我们的方法报告了定性和定量结果,这表明了比最近提出的基于概念的解释方法更好的性能。我们报告了一个没有地面真理概念的两个数据集,即CiFar10,ImageNet和两个具有地面真理概念的数据集,即AWA2,Cub-200,以显示我们两种情况的方法。据我们所知,我们是第一批展示诸如ImageNet的大规模数据集的结果。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
Concept bottleneck models (CBMs) (Koh et al. 2020) are interpretable neural networks that first predict labels for human-interpretable concepts relevant to the prediction task, and then predict the final label based on the concept label predictions.We extend CBMs to interactive prediction settings where the model can query a human collaborator for the label to some concepts. We develop an interaction policy that, at prediction time, chooses which concepts to request a label for so as to maximally improve the final prediction. We demonstrate thata simple policy combining concept prediction uncertainty and influence of the concept on the final prediction achieves strong performance and outperforms a static approach proposed in Koh et al. (2020) as well as active feature acquisition methods proposed in the literature. We show that the interactiveCBM can achieve accuracy gains of 5-10% with only 5 interactions over competitive baselines on the Caltech-UCSDBirds, CheXpert and OAI datasets.
translated by 谷歌翻译
对于使用高性能机器学习算法通常不透明的决策,人们越来越担心。用特定于领域的术语对推理过程的解释对于在医疗保健等风险敏感领域中采用至关重要。我们认为,机器学习算法应该可以通过设计来解释,并且表达这些解释的语言应与域和任务有关。因此,我们将模型的预测基于数据的用户定义和特定于任务的二进制函数,每个都对最终用户有明确的解释。然后,我们最大程度地减少了在任何给定输入上准确预测所需的预期查询数。由于解决方案通常是棘手的,因此在事先工作之后,我们根据信息增益顺序选择查询。但是,与以前的工作相反,我们不必假设查询在有条件地独立。取而代之的是,我们利用随机生成模型(VAE)和MCMC算法(未经调整的Langevin)来选择基于先前的查询 - 答案的输入的最有用的查询。这使得在线确定要解决预测歧义所需的任何深度的查询链。最后,关于视觉和NLP任务的实验证明了我们的方法的功效及其优越性比事后解释的优势。
translated by 谷歌翻译
自我监督的视觉表示学习最近引起了重大的研究兴趣。虽然一种评估自我监督表示的常见方法是通过转移到各种下游任务,但我们研究了衡量其可解释性的问题,即了解原始表示中编码的语义。我们将后者提出为估计表示和手动标记概念空间之间的相互信息。为了量化这一点,我们介绍了一个解码瓶颈:必须通过简单的预测变量捕获信息,将概念映射到表示空间中的簇。我们称之为反向线性探测的方法为表示表示的语义敏感。该措施还能够检测出表示何时包含概念的组合(例如“红色苹果”),而不仅仅是单个属性(独立的“红色”和“苹果”)。最后,我们建议使用监督分类器自动标记大型数据集,以丰富用于探测的概念的空间。我们使用我们的方法来评估大量的自我监督表示形式,通过解释性对它们进行排名,并通过线性探针与标准评估相比出现的差异,并讨论了一些定性的见解。代码为:{\ Scriptsize {\ url {https://github.com/iro-cp/ssl-qrp}}}}}。
translated by 谷歌翻译
近年来,通过提取基于规则的模型,提高了深度神经网络(DNN)的可解释性和调试性,这一直有很大的努力,该模型近似于其决策边界。然而,当前DNN规则提取方法在提取DNN的潜在空间时,当提取称为分解算法时,要么限制为单层DNN或难以称为DNN或数据的大小。在本文中,我们通过介绍EclaIRE来解决这些限制,这是一种能够缩放到大型DNN架构和大型训练数据集的新型多项式规则提取算法。我们在各种任务中评估乳房,从乳腺癌预后到粒子检测,并表明它一直提取比当前最先进的方法提取更准确和可理解的规则集,同时使用数量级的计算资源。我们通过开源混音库(https://github.com/mateoespinosa/remix),使我们的所有方法包括规则集可视化接口,包括规则集可视化接口。
translated by 谷歌翻译
基于概念的黑框模型的解释通常更为直观,让人类理解。基于概念的解释最广泛采用的方法是概念激活向量(CAV)。CAV依靠学习给定模型和概念的某些潜在表示之间的线性关系。线性可分离性通常是隐式假定的,但通常不正确。在这项工作中,我们从基于概念的解释和提出的概念梯度(CG)的最初意图开始,将基于概念的解释扩展到线性概念功能之外。我们表明,对于一般(潜在的非线性)概念,我们可以数学上评估如何影响模型预测的概念的小变化,从而导致基于梯度的解释扩展到概念空间。我们从经验上证明,在玩具示例和现实世界数据集中,CG表现优于CAV。
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
在这项工作中,我们审查并评估了一个具有公开可用和广泛使用的数据集的深度学习知识追踪(DLKT)模型,以及学习编程的新型学生数据集。评估的DLKT模型已重新实现,用于评估先前报告的结果的可重复性和可复制性。我们测试在与模型的主要架构上独立于模型的比较模型中找到的不同输入和输出层变化,以及在某些研究中隐含地和明确地使用的不同最大尝试计数选项。几个指标用于反映评估知识追踪模型的质量。评估的知识追踪模型包括Vanilla-DKT,两个长短期内存深度知识跟踪(LSTM-DKT)变体,两个动态键值存储器网络(DKVMN)变体,以及自我细致的知识跟踪(SAKT)。我们评估Logistic回归,贝叶斯知识跟踪(BKT)和简单的非学习模型作为基准。我们的结果表明,DLKT模型一般优于非DLKT模型,DLKT模型之间的相对差异是微妙的,并且在数据集之间经常变化。我们的研究结果还表明,通常的纯模型,例如平均预测,比更复杂的知识追踪模型更好地表现出更好的性能,尤其是在准确性方面。此外,我们的公制和封路数据分析显示,用于选择最佳模型的度量标准对模型的性能有明显的影响,并且该度量选择可以影响模型排名。我们还研究了输入和输出层变化的影响,过滤出长期尝试序列,以及随机性和硬件等非模型属性。最后,我们讨论模型性能可重量和相关问题。我们的模型实现,评估代码和数据作为本工作的一部分发布。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
The deployment of Deep Learning (DL) models is still precluded in those contexts where the amount of supervised data is limited. To answer this issue, active learning strategies aim at minimizing the amount of labelled data required to train a DL model. Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary. These techniques are theoretically sound, but an understanding of the selected samples based on their content is not straightforward, further driving non-experts to consider DL as a black-box. For the first time, here we propose a different approach, taking into consideration common domain-knowledge and enabling non-expert users to train a model with fewer samples. In our Knowledge-driven Active Learning (KAL) framework, rule-based knowledge is converted into logic constraints and their violation is checked as a natural guide for sample selection. We show that even simple relationships among data and output classes offer a way to spot predictions for which the model need supervision. The proposed approach (i) outperforms many active learning strategies in terms of average F1 score, particularly in those contexts where domain knowledge is rich. Furthermore, we empirically demonstrate that (ii) KAL discovers data distribution lying far from the initial training data unlike uncertainty-based strategies, (iii) it ensures domain experts that the provided knowledge is respected by the model on test data, and (iv) it can be employed even when domain-knowledge is not available by coupling it with a XAI technique. Finally, we also show that KAL is also suitable for object recognition tasks and, its computational demand is low, unlike many recent active learning strategies.
translated by 谷歌翻译
The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train more than 12 000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on seven different data sets. We observe that while the different methods successfully enforce properties "encouraged" by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.
translated by 谷歌翻译
Superhuman神经网络代理如alphazero是什么?这个问题是科学和实际的兴趣。如果强神经网络的陈述与人类概念没有相似之处,我们理解他们的决定的忠实解释的能力将受到限制,最终限制了我们可以通过神经网络解释来实现的。在这项工作中,我们提供了证据表明,人类知识是由alphapero神经网络获得的,因为它在国际象棋游戏中列车。通过探究广泛的人类象棋概念,我们在alphazero网络中显示了这些概念的时间和地点。我们还提供了一种关注开放游戏的行为分析,包括来自国际象棋Grandmaster Vladimir Kramnik的定性分析。最后,我们开展了初步调查,观察alphazero的表现的低级细节,并在线提供由此产生的行为和代表性分析。
translated by 谷歌翻译
The choice of activation functions and their motivation is a long-standing issue within the neural network community. Neuronal representations within artificial neural networks are commonly understood as logits, representing the log-odds score of presence of features within the stimulus. We derive logit-space operators equivalent to probabilistic Boolean logic-gates AND, OR, and XNOR for independent probabilities. Such theories are important to formalize more complex dendritic operations in real neurons, and these operations can be used as activation functions within a neural network, introducing probabilistic Boolean-logic as the core operation of the neural network. Since these functions involve taking multiple exponents and logarithms, they are computationally expensive and not well suited to be directly used within neural networks. Consequently, we construct efficient approximations named $\text{AND}_\text{AIL}$ (the AND operator Approximate for Independent Logits), $\text{OR}_\text{AIL}$, and $\text{XNOR}_\text{AIL}$, which utilize only comparison and addition operations, have well-behaved gradients, and can be deployed as activation functions in neural networks. Like MaxOut, $\text{AND}_\text{AIL}$ and $\text{OR}_\text{AIL}$ are generalizations of ReLU to two-dimensions. While our primary aim is to formalize dendritic computations within a logit-space probabilistic-Boolean framework, we deploy these new activation functions, both in isolation and in conjunction to demonstrate their effectiveness on a variety of tasks including image classification, transfer learning, abstract reasoning, and compositional zero-shot learning.
translated by 谷歌翻译
神经网络(NNS)和决策树(DTS)都是机器学习的流行模型,但具有相互排斥的优势和局限性。为了带来两个世界中的最好,提出了各种方法来明确或隐式地集成NN和DTS。在这项调查中,这些方法是在我们称为神经树(NTS)的学校中组织的。这项调查旨在对NTS进行全面审查,并尝试确定它们如何增强模型的解释性。我们首先提出了NTS的彻底分类学,该分类法表达了NNS和DTS的逐步整合和共同进化。之后,我们根据NTS的解释性和绩效分析,并建议解决其余挑战的可能解决方案。最后,这项调查以讨论有条件计算和向该领域的有希望的方向进行讨论结束。该调查中审查的论文列表及其相应的代码可在以下网址获得:https://github.com/zju-vipa/awesome-neural-trees
translated by 谷歌翻译
Rising usage of deep neural networks to perform decision making in critical applications like medical diagnosis and financial analysis have raised concerns regarding their reliability and trustworthiness. As automated systems become more mainstream, it is important their decisions be transparent, reliable and understandable by humans for better trust and confidence. To this effect, concept-based models such as Concept Bottleneck Models (CBMs) and Self-Explaining Neural Networks (SENN) have been proposed which constrain the latent space of a model to represent high level concepts easily understood by domain experts in the field. Although concept-based models promise a good approach to both increasing explainability and reliability, it is yet to be shown if they demonstrate robustness and output consistent concepts under systematic perturbations to their inputs. To better understand performance of concept-based models on curated malicious samples, in this paper, we aim to study their robustness to adversarial perturbations, which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool a well-learned concept-based model. Specifically, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models. Subsequently, we propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks. Extensive experiments on one synthetic and two real-world datasets demonstrate the effectiveness of the proposed attacks and the defense approach.
translated by 谷歌翻译
对理解和分解学习的嵌入空间的兴趣正在增长。例如,最近基于概念的解释技术通过可解释的潜在组件分析机器学习模型。必须在模型的嵌入空间中发现此类组件,例如,通过独立的组件分析(ICA)或现代的分离学习技术。尽管这些无监督的方法提供了一个合理的正式框架,但它们要么需要访问数据生成功能,要么对数据分布(例如组件的独立性)施加严格的假设,而这些假设通常在实践中受到侵犯。在这项工作中,我们将视觉模型的概念解释性与解开学习和ICA联系起来。这使我们能够提供有关如何识别组件的第一个理论结果,而无需任何分配假设。从这些见解中,我们得出了与当前方法相比,它适用于更广泛的问题,但拥有正式的可识别性保证。在与组件分析和300多个最先进的分解模型的广泛比较中,即使在不同的分布和相关强度下,DA也稳定地保持了卓越的性能。
translated by 谷歌翻译