Privacy noise may negate the benefits of using adaptive optimizers in differentially private model training. Prior works typically address this issue by using auxiliary information (e.g., public data) to boost the effectiveness of adaptive optimization. In this work, we explore techniques to estimate and efficiently adapt to gradient geometry in private adaptive optimization without auxiliary data. Motivated by the observation that adaptive methods can tolerate stale preconditioners, we propose differentially private adaptive training with delayed preconditioners (DP^2), a simple method that constructs delayed but less noisy preconditioners to better realize the benefits of adaptivity. Theoretically, we provide convergence guarantees for our method for both convex and non-convex problems, and analyze trade-offs between delay and privacy noise reduction. Empirically, we explore DP^2 across several real-world datasets, demonstrating that it can improve convergence speed by as much as 4x relative to non-adaptive baselines and match the performance of state-of-the-art optimization methods that require auxiliary data.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
Many problems in causal inference and economics can be formulated in the framework of conditional moment models, which characterize the target function through a collection of conditional moment restrictions. For nonparametric conditional moment models, efficient estimation often relies on preimposed conditions on various measures of ill-posedness of the hypothesis space, which are hard to validate when flexible models are used. In this work, we address this issue by proposing a procedure that automatically learns representations with controlled measures of ill-posedness. Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator, which can be used for kernelized estimators and is known to facilitate minimax optimal estimation in certain settings. We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator. We evaluate the proposed method on proximal causal inference tasks, exhibiting promising performance on high-dimensional, semi-synthetic data.
translated by 谷歌翻译
在本文中,我们考虑了神经视频压缩(NVC)中位分配的问题。由于帧参考结构,使用相同的R-D(速率)权衡参数$ \ lambda $的当前NVC方法是次优的,这带来了位分配的需求。与以前基于启发式和经验R-D模型的方法不同,我们建议通过基于梯度的优化解决此问题。具体而言,我们首先提出了一种基于半损坏的变异推理(SAVI)的连续位实现方法。然后,我们通过更改SAVI目标,使用迭代优化提出了一个像素级隐式分配方法。此外,我们基于NVC的可区分特征得出了精确的R-D模型。我们通过使用精确的R-D模型证明其等效性与位分配的等效性来展示我们的方法的最佳性。实验结果表明,我们的方法显着改善了NVC方法,并且胜过现有的位分配方法。我们的方法是所有可区分NVC方法的插件,并且可以直接在现有的预训练模型上采用。
translated by 谷歌翻译
基于匹配的方法,尤其是基于时空记忆的方法,在半监督视频对象分割(VOS)中明显领先于其他解决方案。但是,不断增长和冗余的模板特征导致推断效率低下。为了减轻这一点,我们提出了一个新型的顺序加权期望最大化(SWEM)网络,以大大降低记忆特征的冗余。与以前仅检测帧之间特征冗余的方法不同,Swem通过利用顺序加权EM算法来合并框架内和框架间的相似特征。此外,框架特征的自适应权重具有代表硬样品的灵活性,从而改善了模板的歧视。此外,该提出的方法在内存中保留了固定数量的模板特征,从而确保了VOS系统的稳定推理复杂性。对常用的戴维斯和YouTube-VOS数据集进行了广泛的实验,验证了SWEM的高效率(36 fps)和高性能(84.3 \%$ \ Mathcal {J} \&\ Mathcal {F} $代码可在以下网址获得:https://github.com/lmm077/swem。
translated by 谷歌翻译
本文介绍了一个新颖的自我监督的细粒度对话评估框架(自我评估)。核心思想是建模转弯质量与整个对话质量之间的相关性。我们首先提出了一种新型的自动数据构建方法,该方法可以自动为任意对话数据分配细粒度的分数。然后,我们使用多层对比度学习模式训练\ textbf {self eval},有助于区分不同的分数水平。多个基准测试的实验结果表明,自我与人类评估高度一致,并且比最先进的模型更好。我们对本文的实验进行了详细的分析。我们的代码和数据将在GitHub上发布。
translated by 谷歌翻译
我们提出了一些动态神经辐射场(FDNERF),这是第一种基于NERF的方法,能够根据少量动态图像重建和表达3D面的表达编辑。与需要密集图像作为输入的现有动态NERF不同,并且只能为单个身份建模,我们的方法可以使跨不同人的不同人进行面对重建。与设计用于建模静态场景的最先进的几杆NERF相比,提出的FDNERF接受视图的动态输入,并支持任意的面部表达编辑,即产生具有输入超出输入的新表达式的面孔。为了处理动态输入之间的不一致之处,我们引入了精心设计的条件特征翘曲(CFW)模块,以在2D特征空间中执行表达条件的翘曲,这也是身份自适应和3D约束。结果,不同表达式的特征被转换为目标的特征。然后,我们根据这些视图一致的特征构建一个辐射场,并使用体积渲染来合成建模面的新型视图。进行定量和定性评估的广泛实验表明,我们的方法在3D面重建和表达编辑任务上都优于现有的动态和几乎没有射击的NERF。我们的代码和模型将在接受后提供。
translated by 谷歌翻译
机器学习(ML)从业人员和组织正在建立预训练模型的模型动物园,其中包含元数据描述ML模型和数据集的属性,这些模型和数据集可用于报告,审计,可重复性和解释性目的。Metatada目前尚未标准化;它的表现力是有限的;并且没有可互操作的方法来存储和查询它。因此,阻碍了模型搜索,重用,比较和组成。在本文中,我们倡导标准化的ML模型元数据表示和管理,并提出了一个支持从业者管理和查询元数据的工具包。
translated by 谷歌翻译
本文介绍了Lingjing团队在NLPCC-2022-Shared-Task-4多模式对话理解和发电(MDUG)中的实验方案。MDUG任务可以分为两个阶段:多模式上下文理解和响应生成。为了充分利用视觉信息以获得场景的理解和对话的生成,我们提出了MDUG任务的场景感知提示。具体而言,我们利用多任务策略共同建模场景和会话多模式的理解。采用视觉标题来了解场景信息,而基于场景和会话感知标签的固定类型的模板提示则用于进一步改善对话生成性能。广泛的实验结果表明,与其他竞争方法相比,所提出的方法已经达到了最先进的(SOTA)性能,在此MDUG竞争中,我们在所有三个子任务中排名1-ST。
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译