Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.
translated by 谷歌翻译
Visually realistic GAN-generated facial images raise obvious concerns on potential misuse. Many effective forensic algorithms have been developed to detect such synthetic images in recent years. It is significant to assess the vulnerability of such forensic detectors against adversarial attacks. In this paper, we propose a new black-box attack method against GAN-generated image detectors. A novel contrastive learning strategy is adopted to train the encoder-decoder network based anti-forensic model under a contrastive loss function. GAN images and their simulated real counterparts are constructed as positive and negative samples, respectively. Leveraging on the trained attack model, imperceptible contrastive perturbation could be applied to input synthetic images for removing GAN fingerprint to some extent. As such, existing GAN-generated image detectors are expected to be deceived. Extensive experimental results verify that the proposed attack effectively reduces the accuracy of three state-of-the-art detectors on six popular GANs. High visual quality of the attacked images is also achieved. The source code will be available at https://github.com/ZXMMD/BAttGAND.
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译
基于文本的人检索的核心问题是如何弥合多模式数据之间的异质差距。以前的许多方法,用于学习以\ textbf {交叉模式分布共识预测(CDCP)}方式学习潜在的常见歧管映射范式。当将某个模态分布到公共歧管中的映射特征时,相反模态的特征分布是完全不可见的。也就是说,如何实现跨模式分布共识,以便将多模式特征嵌入和对齐构建的跨模式公共歧管中,这完全取决于模型本身的经验,而不是实际情况。通过这种方法,不可避免的是,多模式数据在共同的歧管中不能很好地对齐,这最终导致了次优的检索性能。为了克服此\ textbf {CDCP困境},我们提出了一种称为lbul的新颖算法,以学习基于文本的人检索的一致的跨模式公共歧管(C $^{3} $ M)。正如中文的谚语所说,我们方法的核心思想是``\ textit {san si er hou xing}',即\ textbf {thee thee thee thee thee you lap leak(lbul)}。 LBUL的常见歧管映射机制包含一个看起来的步骤和跳跃步骤。与基于CDCP的方法相比,LBUL考虑了视觉和文本方式的分布特征,然后将数据从某种模式嵌入到C $^{3} $ M中以获得更固体的交叉模式分布共识,从而获得了优质检索准确性。我们对两个基于文本的人检索数据集Cuhk-Pedes和RSTPREID评估了建议的方法。实验结果表明,所提出的LBUL胜过先前的方法,并实现了最新的性能。
translated by 谷歌翻译
给定自然语言描述,基于文本的人检索旨在从大规模人物图像数据库中识别目标人的图像。现有方法通常面对\ textbf {颜色过度盟军问题},这意味着在匹配跨模式数据时,模型在很大程度上依赖颜色信息。实际上,颜色信息是检索的重要决策,但是对颜色的过度依赖会分散模型从其他关键线索(例如纹理信息,结构信息等)中分散注意力,从而导致了次优的检索表现。为了解决这个问题,在本文中,我们建议\ textbf {c} apture \ textbf {a} ll-round \ textbf {i} nformation \ textbf {b} eyond \ textbf {c} olor(c} olor( )通过用于基于文本的人检索的共同优化的多分支体系结构。 CAIBC包含三个分支,包括RGB分支,灰度(GRS)分支和颜色(CLR)分支。此外,为了以平衡和有效的方式充分使用全方位信息,采用了相互学习机制来启用三个分支,这些分支可以参与信息的各个方面,以相互交流和学习。进行了广泛的实验分析,以评估我们在\ textbf {有监督}和\ textbf {弱监督}基于文本的人检索的\ textbf {pertexbf {pertegbf {pertegbf {cuhk-pedes和rstpreid数据集上的提议的CAIBC方法,这表明CAIBC显着超过现有的方法和现有方法。在这三个任务上实现最先进的性能。
translated by 谷歌翻译
能够从图形数据中学习表示形式的图形神经网络(GNNS)自然适合对分子系统进行建模。这篇综述介绍了GNN及其对小有机分子的各种应用。GNNS依靠消息通用操作(一种通用而强大的框架)来迭代更新节点功能。许多研究设计GNN体系结构,以有效地学习2D分子图的拓扑信息以及3D分子系统的几何信息。GNN已在各种分子应用中实施,包括分子属性预测,分子评分和对接,分子优化和从头产生,分子动力学仿真等。此外,综述还总结了最近的自我治疗学习的发展,用于带有GNN的分子。
translated by 谷歌翻译
有丝分裂细胞的描述是肿瘤诊断的关键特征。但是,由于有丝分裂细胞形态的变异性,检测肿瘤组织中有丝分裂细胞是一项高度挑战的任务。同时,尽管先进的深度学习方法在细胞检测方面取得了巨大成功,但从另一个域(即不同的肿瘤类型和不同的扫描仪)测试数据时,性能通常是不令人满意的。因此,有必要开发用于检测域中稳健性的有丝分裂细胞的算法。我们的工作进一步提出了基于基线(视网膜)的前景检测和肿瘤分类任务,并利用数据扩展来改善模型的域泛化性能。我们在具有挑战性的前测试数据集上实现了最先进的性能(F1分数:0.5809)。
translated by 谷歌翻译
时空视频超分辨率(STVSR)的目标是提高帧速率(也称为时间分辨率)和给定视频的空间分辨率。最近的方法通过端到端的深神经网络解决了STVSR。一个流行的解决方案是首先提高视频的帧速率;然后在不同的框架功能之间执行特征改进;最后增加了这些功能的空间分辨率。在此过程中,仔细利用了不同帧的特征之间的时间相关性。然而,尚未强调不同(空间)分辨率的特征之间的空间相关性。在本文中,我们提出了一个时空特征交互网络,以通过在不同框架和空间分辨率的特征之间利用空间和时间相关来增强STVSR。具体而言,引入了空间 - 周期框架插值模块,以同时和互动性地插值低分辨率和高分辨率的中间框架特征。后来分别部署了空间 - 周期性的本地和全局细化模块,以利用不同特征之间的空间 - 周期相关性进行细化。最后,采用了新的运动一致性损失来增强重建帧之间的运动连续性。我们对三个标准基准测试,即VID4,Vimeo-90K和Adobe240进行实验,结果表明,我们的方法可以通过相当大的余量提高了最先进的方法。我们的代码将在https://github.com/yuezijie/stinet-pace time-video-super-resolution上找到。
translated by 谷歌翻译
在本文中,我们旨在设计一种能够共同执行艺术,照片现实和视频风格转移的通用风格的转移方法,而无需在培训期间看到视频。以前的单帧方法对整个图像进行了强大的限制,以维持时间一致性,在许多情况下可能会违反。取而代之的是,我们做出了一个温和而合理的假设,即全球不一致是由局部不一致所支配的,并设计了应用于本地斑块的一般对比度连贯性损失(CCPL)。 CCPL可以在样式传输过程中保留内容源的连贯性,而不会降低样式化。此外,它拥有一种邻居调节机制,从而大大减少了局部扭曲和大量视觉质量的改善。除了其在多功能风格转移方面的出色性能外,它还可以轻松地扩展到其他任务,例如图像到图像翻译。此外,为了更好地融合内容和样式功能,我们提出了简单的协方差转换(SCT),以有效地将内容功能的二阶统计数据与样式功能保持一致。实验证明了使用CCPL武装时,所得模型对于多功能风格转移的有效性。
translated by 谷歌翻译
机器学习(ML)可解释性技术可以揭示数据中的不良模式,这些模型模型开发以做出预测 - 一旦部署就会​​造成危害。但是,如何采取行动解决这些模式并不总是很清楚。在ML与人类计算机互动研究人员,医师和数据科学家之间的合作中,我们开发了GAM Changer,这是第一个互动系统,可帮助域专家和数据科学家轻松,负责任地编辑通用的添加剂模型(GAM)和修复有问题的模式。借助新颖的交互技术,我们的工具将可解释性置于行动中 - 使用户能够分析,验证和使模型行为与知识和价值相结合。医师已经开始使用我们的工具来调查和修复肺炎和败血症的风险预测模型,以及在不同领域工作的7位数据科学家的评估突出显示我们的工具易于使用,满足他们的模型编辑需求,并适合他们当前的工作流程。我们的工具以现代网络技术为基础,在用户的网络浏览器或计算笔记本电脑中本地运行,从而降低了使用的障碍。 GAM Changer可在以下公共演示链接中获得:https://interpret.ml/gam-changer。
translated by 谷歌翻译