无监督的生成的虚拟人类具有各种外观和动画姿势对于创建3D人体化身和其他AR/VR应用非常重要。现有方法要么仅限于刚性对象建模,要么不生成,因此无法合成高质量的虚拟人类并使它们进行动画化。在这项工作中,我们提出了Avatargen,这是第一种不仅可以具有不同外观的非刚性人类产生的方法,而且还可以完全控制姿势和观点,同时仅需要2D图像进行训练。具体而言,它通过利用粗糙的人体模型作为代理将观察空间扭曲到规范空间下的标准头像,将最近的3D甘斯扩展到了人类的衣服。为了建模非刚性动力学,它引入了一个变形网络,以学习规范空间中的姿势依赖性变形。为了提高生成的人类化身的几何质量,它利用签名距离字段作为几何表示,从而可以从几何学学习上的身体模型中进行更直接的正则化。从这些设计中受益,我们的方法可以生成具有高质量外观和几何形状建模的动画人体化身,从而极大地表现了先前的3D gan。此外,它有能力用于许多应用,例如单视重构造,复活和文本引导的合成。代码和预培训模型将可用。
translated by 谷歌翻译
最近的作品表明,通过降低空间冗余,可以显着提高视频识别的计算效率。作为代表性的工作,自适应焦点方法(Adafocus)通过动态识别和参加每个视频帧中的信息区域来实现精度和推理速度之间的有利权衡。然而,除非领需要一个复杂的三阶段训练管道(涉及强化学习),导致收敛缓慢,对从业者不友好。这项工作通过引入基于分配的内插的补丁选择操作来重新重新培训ADAFOCUS作为简单的单级算法,实现有效的端到端优化。我们进一步提出了一种改进的培训计划,以解决一级制定的问题,包括缺乏监督,投入多样性和培训稳定性。此外,提出了一种条件 - 退出技术,用于在没有额外训练的情况下在Adafocus的顶部执行时间自适应计算。在六个基准数据集(即,ActivityNet,FCVID,Mini-Kinetics,Something-V1&V2和Jesters)上进行了广泛的实验表明,我们的模型显着优于原始的Adafocus和其他竞争基础,同时培训更简单和有效。代码可在https://github.com/leaplabthu/adafocusv2获得。
translated by 谷歌翻译
类增量学习(CIL)旨在以相位逐相的方式学习多级分类器,其中仅在每个阶段提供类的子集的数据。以前的作品主要专注于初始之后减轻阶段的遗忘。但是,我们发现,在初始阶段改善CIL也是一个有希望的方向。具体而言,我们通过实验表明,在初始阶段直接鼓励CIL学习者将类似的表示类似的表示,因为在所有类别上训练的模型可以大大提升CIL性能。由此激励,我们研究了NA \“IVERY训练初始阶段模型和Oracle模型之间的差异。具体来说,由于这两个模型之间的一个主要区别是培训类的数量,我们研究了这种差异如何影响模型表示。我们发现,通过较少的培训类,每个班级的数据表示位于一个漫长而狭窄的地区;通过更多的培训类,每个阶级的陈述更统一地散射。灵感来自这种观察,我们提出了课堂上的去相关性(CWD)有效地规范了每个类的表示,以更统一地散射,从而模拟与所有类联合训练的模型(即Oracle模型)。我们的CWD易于实施,易于插入现有方法。各种各样的实验基准数据集显示CWD一直在且显着提高现有最先进方法的性能约为1 \%至3 \%。代码将被释放。
translated by 谷歌翻译
探讨了语言建模流行的变形金刚,用于近期解决视觉任务,例如,用于图像分类的视觉变压器(VIT)。 VIT模型将每个图像分成具有固定长度的令牌序列,然后应用多个变压器层以模拟它们的全局关系以进行分类。然而,当从像想象中的中型数据集上从头开始训练时,VIT对CNNS达到较差的性能。我们发现它是因为:1)输入图像的简单标记未能模拟相邻像素之间的重要局部结构,例如边缘和线路,导致训练采样效率低。 2)冗余注意骨干骨干设计对固定计算预算和有限的训练样本有限的具有限制性。为了克服这些限制,我们提出了一种新的令牌到令牌视觉变压器(T2T-VIT),它包含1)层 - 明智的代币(T2T)转换,通过递归聚合相邻来逐步地结构于令牌到令牌。代币进入一个令牌(令牌到令牌),这样可以建模由周围令牌所代表的本地结构,并且可以减少令牌长度; 2)一种高效的骨干,具有深度狭窄的结构,用于在实证研究后CNN建筑设计的激励变压器结构。值得注意的是,T2T-VIT将Vanilla Vit的参数计数和Mac减少了一半,同时从想象中从头开始训练时,改善了超过3.0 \%。它还优于Endnets并通过直接培训Imagenet训练来实现与MobileNets相当的性能。例如,T2T-VTO与Reset50(21.5M参数)的可比大小(21.5M参数)可以在图像分辨率384 $ \ Times 384上实现83.3 \%TOP1精度。 (代码:https://github.com/yitu-opensource/t2t-vit)
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Reinforcement Learning (RL) is currently one of the most commonly used techniques for traffic signal control (TSC), which can adaptively adjusted traffic signal phase and duration according to real-time traffic data. However, a fully centralized RL approach is beset with difficulties in a multi-network scenario because of exponential growth in state-action space with increasing intersections. Multi-agent reinforcement learning (MARL) can overcome the high-dimension problem by employing the global control of each local RL agent, but it also brings new challenges, such as the failure of convergence caused by the non-stationary Markov Decision Process (MDP). In this paper, we introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches. The OPNDQN algorithm solves the problem that traditional algorithms cannot be used in large state-action space traffic models by utilizing a fictitious game approach at each iteration to find the nash equilibrium among neighboring intersections, from which no intersection has incentive to unilaterally deviate. One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process because it considers the mutual influence among neighboring intersections by sharing their actions. On the other hand, for training a large traffic network, the convergence rate of OPNDQN is higher than that of existing MARL approaches because it does not incorporate all state information of each agent. We conduct an extensive experiments by using Simulation of Urban MObility simulator (SUMO), and show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
translated by 谷歌翻译