在本文中,我们提出了两种技术,即联合建模和数据增强,以改善视听场景分类(AVSC)的系统性能。我们采用仅在图像数据集中培训的预训练网络来提取视频嵌入;而对于音频嵌入模型,我们决定从头开始训练它们。我们探索不同的神经网络体系结构,以有效地结合视频和音频方式。此外,研究了数据增强策略以增加视听训练设置的规模。对于视频方式,验证了兰德金几个操作的有效性。提出了Audio-Video关节混合方案,以进一步改善AVSC的性能。在Tau Urban Audio Visual Spacees 2021的开发集中,我们的最终系统可以在提交给Dcase 2021 Task 1B的所有单个AVSC系统中达到94.2%的最佳准确性。
translated by 谷歌翻译
常规的几杆分类(FSC)旨在识别出有限标记的数据的新课程中的样本。最近,已经提出了域泛化FSC(DG-FSC),目的是识别来自看不见的域的新型类样品。 DG-FSC由于基础类(用于培训)和新颖类(评估中遇到)之间的域移位,对许多模型构成了巨大的挑战。在这项工作中,我们为解决DG-FSC做出了两个新颖的贡献。我们的首要贡献是提出重生网络(BAN)情节培训,并全面研究其对DG-FSC的有效性。作为一种特定的知识蒸馏形式,已证明禁令可以通过封闭式设置来改善常规监督分类的概括。这种改善的概括促使我们研究了DG-FSC的禁令,我们表明禁令有望解决DG-FSC中遇到的域转移。在令人鼓舞的发现的基础上,我们的第二个(主要)贡献是提出很少的禁令,FS-Ban,这是DG-FSC的新型禁令方法。我们提出的FS-BAN包括新颖的多任务学习目标:相互正则化,不匹配的老师和元控制温度,这些目标都是专门设计的,旨在克服DG-FSC中的中心和独特挑战,即过度拟合和领域差异。我们分析了这些技术的不同设计选择。我们使用六个数据集和三个基线模型进行全面的定量和定性分析和评估。结果表明,我们提出的FS-BAN始终提高基线模型的概括性能,并达到DG-FSC的最先进的准确性。
translated by 谷歌翻译
显着对象检测(SOD)是一个流行而重要的主题,旨在精确检测和分割图像中有趣的区域。我们将语言信息集成到专为显着对象检测任务的基于视觉的U结构网络中。实验基于新创建的DUTS Cross Modal(DUTS-CM)数据集,该数据集包含视觉和语言标签。我们提出了一个称为高效跨模式自我注意力(ECMSA)的新模块,以结合视觉和语言特征并提高原始U结构网络的性能。同时,为了减轻标签的沉重负担,我们通过训练基于DUTS-CM数据集的图像标题模型来采用半监督的学习方法,该模型可以自动标记其他数据集(如Dut-omron和HKU-IS)。综合实验表明,通过自然语言输入可以提高SOD的性能,并且与其他SOD方法相比具有竞争力。
translated by 谷歌翻译
这项工作研究了标签平滑(LS)和知识蒸馏(KD)之间的兼容性。解决这一论文陈述的当代发现采取二分法的观点:Muller等。 (2019)和Shen等。 (2021b)。至关重要的是,没有努力理解和解决这些矛盾的发现,留下了原始问题 - 顺利还是不平稳教师网络? - 未得到答复。我们工作的主要贡献是对系统扩散的发现,分析和验证是缺失的概念,这在理解和解决这些矛盾的发现方面具有重要作用。这种系统的扩散基本上削减了从LS训练的老师蒸馏的好处,从而使KD在升高的温度无效时使KD呈现。我们的发现得到了大规模实验,分析和案例研究的全面支持,包括图像分类,神经机器翻译和紧凑的学生蒸馏任务,这些任务跨越了多个数据集和教师 - 学生架构。根据我们的分析,我们建议从业者使用具有低温转移的LS训练的老师来实现高性能学生。代码和型号可在https://keshik6.github.io/revisiting-ls-kd-compatibility/
translated by 谷歌翻译
卷积神经网络(CNN)已在许多物联网(IoT)设备中应用于多种下游任务。但是,随着边缘设备上的数据量的增加,CNN几乎无法及时完成某些任务,而计算和存储资源有限。最近,过滤器修剪被认为是压缩和加速CNN的有效技术,但是从压缩高维张量的角度来看,现有的方法很少是修剪CNN。在本文中,我们提出了一种新颖的理论,可以在三维张量中找到冗余信息,即量化特征图(QSFM)之间的相似性,并利用该理论来指导滤波器修剪过程。我们在数据集(CIFAR-10,CIFAR-100和ILSVRC-12)上执行QSFM和Edge设备,证明所提出的方法可以在神经网络中找到冗余信息,具有可比的压缩和可耐受的准确性下降。没有任何微调操作,QSFM可以显着压缩CIFAR-56(48.7%的Flops和57.9%的参数),而TOP-1的准确性仅损失0.54%。对于边缘设备的实际应用,QSFM可以将Mobilenet-V2推理速度加速1.53倍,而ILSVRC-12 TOP-1的精度仅损失1.23%。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译