文本分类任务的关键是语言表示和重要信息提取,并且有许多相关研究。近年来,文本分类中的图形神经网络(GNN)的研究逐渐出现并显示出其优势,但现有模型主要集中于直接将单词作为图形节点直接输入GNN模型,而忽略了不同级别的语义结构信息。样品。为了解决该问题,我们提出了一个新的层次图神经网络(HIEGNN),该图分别从Word级,句子级别和文档级别提取相应的信息。与几种基线方法相比,几个基准数据集的实验结果取得更好或相似的结果,这表明我们的模型能够从样品中获得更多有用的信息。
translated by 谷歌翻译
由于其在现实世界应用程序中部署机器学习模型中的重要性,因此无法分布(OOD)检测最近受到了机器学习社区的关注。在本文中,我们通过对特征的分布进行建模,提出了一种不确定性量化方法。我们进一步结合了一种有效的合奏机制,即批处理 - 构造批处理的随机神经网络(BE-SNN)并克服特征崩溃问题。我们将提出的BE-SNN的性能与其他最先进的方法进行了比较,并表明BE-SNN在几个OOD基准上产生了卓越的性能,例如两个漫画数据集,FashionMnist,FashionMnist vs Mnist Dataset,FashionMnistvs notmnist数据集和CIFAR10 vs SVHN数据集。
translated by 谷歌翻译
Emotional support conversation aims at reducing the emotional distress of the help-seeker, which is a new and challenging task. It requires the system to explore the cause of help-seeker's emotional distress and understand their psychological intention to provide supportive responses. However, existing methods mainly focus on the sequential contextual information, ignoring the hierarchical relationships with the global cause and local psychological intention behind conversations, thus leads to a weak ability of emotional support. In this paper, we propose a Global-to-Local Hierarchical Graph Network to capture the multi-source information (global cause, local intentions and dialog history) and model hierarchical relationships between them, which consists of a multi-source encoder, a hierarchical graph reasoner, and a global-guide decoder. Furthermore, a novel training objective is designed to monitor semantic information of the global cause. Experimental results on the emotional support conversation dataset, ESConv, confirm that the proposed GLHG has achieved the state-of-the-art performance on the automatic and human evaluations. The code will be released in here \footnote{\small{~https://github.com/pengwei-iie/GLHG}}.
translated by 谷歌翻译
Recently, model-based agents have achieved better performance than model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is tough to learn the model of the environment. The significant compounding error may hinder the learning process when model-based methods are applied to multi-agent tasks. This paper proposes an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states in the latent space, making agents have the foresight. Our approach can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in different partially observable Markov decision process domains.
translated by 谷歌翻译
Recent state-of-the-art one-stage instance segmentation model SOLO divides the input image into a grid and directly predicts per grid cell object masks with fully-convolutional networks, yielding comparably good performance as traditional two-stage Mask R-CNN yet enjoying much simpler architecture and higher efficiency. We observe SOLO generates similar masks for an object at nearby grid cells, and these neighboring predictions can complement each other as some may better segment certain object part, most of which are however directly discarded by non-maximum-suppression. Motivated by the observed gap, we develop a novel learning-based aggregation method that improves upon SOLO by leveraging the rich neighboring information while maintaining the architectural efficiency. The resulting model is named SODAR. Unlike the original per grid cell object masks, SODAR is implicitly supervised to learn mask representations that encode geometric structure of nearby objects and complement adjacent representations with context. The aggregation method further includes two novel designs: 1) a mask interpolation mechanism that enables the model to generate much fewer mask representations by sharing neighboring representations among nearby grid cells, and thus saves computation and memory; 2) a deformable neighbour sampling mechanism that allows the model to adaptively adjust neighbor sampling locations thus gathering mask representations with more relevant context and achieving higher performance. SODAR significantly improves the instance segmentation performance, e.g., it outperforms a SOLO model with ResNet-101 backbone by 2.2 AP on COCO \texttt{test} set, with only about 3\% additional computation. We further show consistent performance gain with the SOLOv2 model.
translated by 谷歌翻译
我们开发了从运动管道的结构中恢复损坏的keypoint匹配的新统计信息。统计信息基于Keypoint匹配图的群集结构中出现的一致性约束。统计数据旨在为损坏的匹配和未损坏的匹配提供较小的值。这些新统计数据与迭代重新重量方案相结合以过滤关键点,然后可以将其从运动管道馈送到任何标准结构中。可以有效地实现该滤波方法并将其缩放到大规模的数据集,因为它仅需要稀疏矩阵乘法。我们展示了这种方法对来自运动数据集的合成和实际结构的功效,并表明它在这些任务中实现了最先进的准确性和速度。
translated by 谷歌翻译
独立的分量分析旨在从它们的线性混合物中尽可能独立地恢复未知组件。这种技术已广泛应用于许多领域,例如数据分析,信号处理和机器学习。在本文中,我们提出了一种新的基于促进基于促进的独立分量分析算法。我们的算法通过引入最大似然估计来填充非参数独立分量分析中的间隙。各种实验与许多目前已知的算法相比验证其性能。
translated by 谷歌翻译
独立分量分析(ICA)旨在从它们的线性混合物中恢复相互独立的来源,并且F Astica是最成功的ICA算法之一。虽然通过向进入的未预期估计提高更多非线性函数来提高F Astica的性能似乎是合理的,但在这种情况下,F Astica退化的原始定点法(近似牛顿方法)。为了缓解这个问题,我们提出了一种基于最小歧视信息(MDI)的二阶近似的新方法。我们方法中的关节最大化包括通过定点方法最小化单个加权最小二乘和寻找解密矩阵。与其他流行的ICA算法相比,实验结果验证了其效率。
translated by 谷歌翻译
自我关注已成为最近网络架构的一个组成部分,例如,统治主要图像和视频基准的变压器。这是因为自我关注可以灵活地模拟远程信息。出于同样的原因,研究人员最近使尝试恢复多层Perceptron(MLP)并提出一些类似MLP的架构,显示出极大的潜力。然而,当前的MLP样架构不擅长捕获本地细节并缺乏对图像和/或视频中的核心细节的逐步了解。为了克服这个问题,我们提出了一种新颖的Morphmlp架构,该架构专注于在低级层处捕获本地细节,同时逐渐改变,以专注于高级层的长期建模。具体地,我们设计一个完全连接的层,称为Morphfc,两个可变过滤器,其沿着高度和宽度尺寸逐渐地发展其接收领域。更有趣的是,我们建议灵活地调整视频域中的Morphfc层。为了我们最好的知识,我们是第一个创建类似MLP骨干的用于学习视频表示的骨干。最后,我们对图像分类,语义分割和视频分类进行了广泛的实验。我们的Morphmlp,如此自我关注的自由骨干,可以与基于自我关注的型号一样强大。
translated by 谷歌翻译
跨模型检索已成为仅限文本搜索引擎(SE)最重要的升级之一。最近,通过早期交互的成对文本图像输入的强大表示,Vision-Language(VL)变压器的准确性已经表现优于文本图像检索的现有方法。然而,当使用相同的范例来推理时,VL变压器的效率仍然太低,不能应用于真正的跨模型SE。通过人类学习机制和使用跨模型知识的启发,本文提出了一种新颖的视觉语言分解变压器(VLDEFormer),这大大提高了VL变压器的效率,同时保持了它们的出色准确性。通过所提出的方法,跨模型检索分为两个阶段:VL变压器学习阶段和V​​L分解阶段。后期阶段发挥单一模态索引的作用,这在某种程度上是文本SE的术语索引。该模型从早期交互预训练中学习跨模型知识,然后将其分解为单个编码器。分解只需要监督和达到1000美元+ $倍的小目标数据集,并且少于0.6美元\%平均召回。 VLDEFormer还优于COCO和FLICKR30K的最先进的视觉语义嵌入方法。
translated by 谷歌翻译