尽管过度参数化的模型已经在许多机器学习任务上表现出成功,但与培训不同的测试分布的准确性可能会下降。这种准确性下降仍然限制了在野外应用机器学习的限制。同时,重要的加权是一种处理分配转移的传统技术,已被证明在经验和理论上对过度参数化模型的影响较小甚至没有影响。在本文中,我们提出了重要的回火来改善决策界限,并为过度参数化模型取得更好的结果。从理论上讲,我们证明在标签移位和虚假相关设置下,组温度的选择可能不同。同时,我们还证明正确选择的温度可以解脱出少数群体崩溃的分类不平衡。从经验上讲,我们使用重要性回火来实现最严重的小组分类任务的最新结果。
translated by 谷歌翻译
初始化时(OPAI)的一次性网络修剪是降低网络修剪成本的有效方法。最近,人们越来越相信数据在OPAI中是不必要的。但是,我们通过两种代表性的OPAI方法,即剪切和掌握的消融实验获得了相反的结论。具体而言,我们发现信息数据对于增强修剪性能至关重要。在本文中,我们提出了两种新颖的方法,即判别性的单发网络修剪(DOP)和超级缝制,以通过高级视觉判别图像贴片来修剪网络。我们的贡献如下。(1)广泛的实验表明OPAI是数据依赖性的。(2)超级缝线的性能明显优于基准图像网上的原始OPAI方法,尤其是在高度压缩的模型中。
translated by 谷歌翻译
由于量子计算的超古典能力,量子机学习是独立应用的,或嵌入了经典模型中以进行决策,尤其是在金融领域。公平和其他道德问题通常是决策的主要关注点之一。在这项工作中,我们为量子机器学习决策模型的公平验证和分析定义了一个正式的框架,我们根据直觉采用了文献中最受欢迎的公平概念之一 - 任何两个类似的人都必须接受类似的对待因此是公正的。我们表明,量子噪声可以提高公平性并开发出一种算法来检查(嘈杂的)量子机学习模型是否公平。特别是,该算法可以在检查过程中找到量子数据(编码个体)的偏置核。这些偏置内核产生无限的偏置对,以研究模型的不公平性。我们的算法是基于高效的数据结构(张量网络)设计的,并在Google的TensorFlow量子上实现。我们的算法的实用性和有效性通过实验结果确认,包括对现实世界数据的收入预测和信用评分,用于一类随机(嘈杂)量子决策模型,具有27个Qubits($ 2^{27} $ - 尺寸状态)空间)三倍($ 2^{18} $乘以$倍的$倍),用于验证量子机学习模型的最新算法。
translated by 谷歌翻译
基于草图的3D形状检索(SBSR)是一项重要但艰巨的任务,近年来引起了越来越多的关注。现有方法在限制设置中解决了该问题,而无需适当模拟真实的应用程序方案。为了模仿现实的设置,在此曲目中,我们采用了不同级别的绘图技能的业余爱好者以及各种3D形状的大规模草图,不仅包括CAD型号,而且还可以从真实对象扫描的模型。我们定义了两个SBSR任务,并构建了两个基准,包括46,000多个CAD型号,1,700个现实型号和145,000个草图。四个团队参加了这一轨道,并为这两个任务提交了15次跑步,由7个常用指标评估。我们希望,基准,比较结果和开源评估法会在3D对象检索社区中促进未来的研究。
translated by 谷歌翻译
我们的面部皮肤呈现出细微的色彩变化,称为远程光绘画(RPPG)信号,我们可以从中提取受试者的心率。最近,提出了许多有关RPPG信号提取的深度学习方法和相关数据集。但是,由于耗时血液流过我们的身体和其他因素,标签波(例如BVP信号)在某些数据集中具有实际RPPG信号的不确定延迟,这导致难以训练网络的训练,这些网络直接预测了RPPG波。在本文中,通过分析RPPG信号和标签波的节奏和周期性的共同特征,我们提出了一组包裹这些网络的训练方法,以便在在数据集中频繁地延迟数据的情况下进行训练时可以保持有效的效率。与其他无延迟RPPG提取方法相比,获得更精确和健壮的心率预测结果。
translated by 谷歌翻译
最近的研究在解释2D图像识别转向网络方面取得了杰出的成功。另一方面,由于视频数据的计算成本和复杂性,对3D视频识别转弯的说明相对较少。在本文中,我们提出了一个3D ACE(基于自动概念的解释)框架,用于解释3D Convnets。在我们的方法中:(1)使用高级Subervoxels表示视频,这对于人类来说是简单的;(2)解释框架估计每个体素的分数,这反映了其在决策过程中的重要性。实验表明,我们的方法可以发现不同重要性级别的时空概念,因此可以探索概念对目标任务的影响,例如动作分类,深度。这些代码公开可用。
translated by 谷歌翻译
我们研究稀疏的线性回归在一个代理网络上,建模为无向图(没有集中式节点)。估计问题被制定为当地套索损失函数的最小化,加上共识约束的二次惩罚 - 后者是获取分布式解决方案方法的工具。虽然在优化文献中广泛研究了基于惩罚的共识方法,但其高维设置中的统计和计算保证仍不清楚。这项工作提供了对此公开问题的答案。我们的贡献是两倍。 First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2 $ -loss,$ s $是稀疏性值,$ d $是环境维度,$ n $是网络中的总示例大小 - 这与集中式采样率相匹配。其次,我们表明,应用于惩罚问题的近端梯度算法,它自然导致分布式实现,线性地收敛到集中统计误差的顺序的公差 - 速率比例为$ \ mathcal {o}( d)$,揭示不可避免的速度准确性困境。数值结果证明了衍生的采样率和收敛速率缩放的紧张性。
translated by 谷歌翻译
在本文中,我们主要专注于用边界条件求解高维随机汉密尔顿系统,并从随机对照的角度提出一种新的方法。为了获得哈密顿系统的近似解,我们首先引入了一个相应的随机最佳控制问题,使得汉密尔顿控制问题的系统正是我们需要解决的,然后开发两种不同的算法适合不同的控制问题。深神经网络近似随机控制。从数值结果中,与先前从求解FBSDES开发的深度FBSDE方法相比,新颖的算法会聚得更快,这意味着它们需要更少的训练步骤,并展示不同哈密顿系统的更稳定的收敛。
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
translated by 谷歌翻译